References of "Al Ismaeil, Kassem"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailWhy is Everyone Training Very Deep Neural Network with Skip Connections?
Oyedotun, Oyebade UL; Al Ismaeil, Kassem; Aouada, Djamila UL

in IEEE Transactions on Neural Networks and Learning Systems (2021)

Detailed reference viewed: 53 (7 UL)
Full Text
Peer Reviewed
See detailReal-Time Enhancement of Dynamic Depth Videos with Non-Rigid Deformations
Al Ismaeil, Kassem; Aouada, Djamila UL; Solignac, Thomas et al

in IEEE Transactions on Pattern Analysis and Machine Intelligence (2016), 39(10), 2045-2059

We propose a novel approach for enhancing depth videos containing non-rigidly deforming objects. Depth sensors are capable of capturing depth maps in real-time but suffer from high noise levels and low ... [more ▼]

We propose a novel approach for enhancing depth videos containing non-rigidly deforming objects. Depth sensors are capable of capturing depth maps in real-time but suffer from high noise levels and low spatial resolutions. While solutions for reconstructing 3D details in static scenes, or scenes with rigid global motions have been recently proposed, handling unconstrained non-rigid deformations in relative complex scenes remains a challenge. Our solution consists in a recursive dynamic multi-frame superresolution algorithm where the relative local 3D motions between consecutive frames are directly accounted for. We rely on the assumption that these 3D motions can be decoupled into lateral motions and radial displacements. This allows to perform a simple local per-pixel tracking where both depth measurements and deformations are dynamically optimized. The geometric smoothness is subsequently added using a multi-level L1 minimization with a bilateral total variation regularization. The performance of this method is thoroughly evaluated on both real and synthetic data. As compared to alternative approaches, the results show a clear improvement in reconstruction accuracy and in robustness to noise, to relative large non-rigid deformations, and to topological changes. Moreover, the proposed approach, implemented on a CPU, is shown to be computationally efficient and working in real-time. [less ▲]

Detailed reference viewed: 323 (15 UL)
Full Text
Peer Reviewed
See detailEnhancement of Dynamic Depth Scenes by Upsampling for Precise Super-Resolution (UP-SR)
Al Ismaeil, Kassem; Aouada, Djamila UL; Mirbach, Bruno et al

in Computer Vision and Image Understanding (2016)

Multi-frame super-resolution is the process of recovering a high resolution image or video from a set of captured low resolution images. Super-resolution approaches have been largely explored in 2-D ... [more ▼]

Multi-frame super-resolution is the process of recovering a high resolution image or video from a set of captured low resolution images. Super-resolution approaches have been largely explored in 2-D imaging. However, their extension to depth videos is not straightforward due to the textureless nature of depth data, and to their high frequency contents coupled with fast motion artifacts. Recently, few attempts have been introduced where only the super-resolution of static depth scenes has been addressed. In this work, we propose to enhance the resolution of dynamic depth videos with non-rigidly moving objects. The proposed approach is based on a new data model that uses densely upsampled, and cumulatively registered versions of the observed low resolution depth frames. We show the impact of upsampling in increasing the sub-pixel accuracy and reducing the rounding error of the motion vectors. Furthermore, with the proposed cumulative motion estimation, a high registration accuracy is achieved between non-successive upsampled frames with relative large motions. A statistical performance analysis is derived in terms of mean square error explaining the effect of the number of observed frames and the effect of the super-resolution factor at a given noise level. We evaluate the accuracy of the proposed algorithm theoretically and experimentally as function of the SR factor, and the level of contaminations with noise. Experimental results on both real and synthetic data show the effectiveness of the proposed algorithm on dynamic depth videos as compared to state-of-art methods. [less ▲]

Detailed reference viewed: 294 (21 UL)