References of "Akbarieh, Arghavan 50031743"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailSustainability assessment of a novel reusable and demountable steel-concrete composite floor system
Fodor, Jovan; Akbarieh, Arghavan UL; Schäfer, Markus UL et al

in ECPPM 2022 - eWork and eBusiness in Architecture, Engineering and Construction 2022 (2023)

Raw materials extraction, production of components, transportation and reverse logistics activities that run in the construction sector are constantly depleting the available global resources ... [more ▼]

Raw materials extraction, production of components, transportation and reverse logistics activities that run in the construction sector are constantly depleting the available global resources. Sustainability of the construction industry and its ability to adopt to the principles of circular economy is under question. This paper addresses these questions through the introduction of a novel reusable steel-concrete composite floor system. Its reuse potential is evaluated through comparative BIM-based Life Cycle Analysis with contemporary systems. [less ▲]

Detailed reference viewed: 26 (0 UL)
Full Text
Peer Reviewed
See detailSemantic Material Bank: A web-based linked data approach for building decommissioning and material reuse
Akbarieh, Arghavan UL; O’Donnell, James; Teferle, Felix Norman UL

in ECPPM 2022 - eWork and eBusiness in Architecture, Engineering and Construction 2022 (2022)

One of the barriers to circular construction is the lack of availability or visibility of reusable materials and components at the right time and place. Therefore, this paper suggests a digital solution ... [more ▼]

One of the barriers to circular construction is the lack of availability or visibility of reusable materials and components at the right time and place. Therefore, this paper suggests a digital solution based on identified key stakeholders’ information requirements and market motivations. This solution helps close the material loop between the decommissioning phase and the new construction phase through semantic technology-based information exchanges among stakeholders. The proposed ontologies are twofold: 1) a Decommissioning & Reuse Ontology (DOR) that enriches information models with circular and End-of-Life cycle information while 2) the Ontology for Environmental Product Declaration (OEPD) digitalising standardised and comparable sustainable information. Both ontologies are employed in the Semantic Material Bank (SMB) proof-of-concept: a BIM-compliant digital urban mining solution through which defined stakeholders can evaluate the availability and status of reusable and recyclable elements for future construction projects. [less ▲]

Detailed reference viewed: 26 (3 UL)
Full Text
Peer Reviewed
See detailPost-Urban Mining Automation and Digitalisation for a Closed- Loop Circular Construction
Akbarieh, Arghavan UL; Schäfer, Markus UL; Waldmann, Daniele UL et al

Poster (2021, October 13)

The large volume of in- and out-flow of raw materials to construction projects has a huge potential to be optimised for resource efficiency and waste reduction. With the recent awareness of the importance ... [more ▼]

The large volume of in- and out-flow of raw materials to construction projects has a huge potential to be optimised for resource efficiency and waste reduction. With the recent awareness of the importance of the circular economy, construction actors are aligning their practices to be more circular and sustainable. The concept of material banks is born out of this awareness in order to document the lifecycle information of materials and facilitate re-using them. The introduction of new cycles before individual materials reach their final lifecycle stages results in reduced negative environmental impacts. This paper presents a workflow by positioning different digital technologies to automate the procedures for reuse assessment: from the deconstructed building to M/C bank to new construction projects. This automation supports a practical material and component reuse, while it provides the necessary infrastructure to digitise and digitalise the post-deconstruction materials to be visualised, selected and used by future designers in Building Information Modelling (BIM)-based design and management environments. To this aim, the coupling of BIM, reality capturing technologies, additive manufacturing techniques, IoT and RFID sensors is also anticipated. [less ▲]

Detailed reference viewed: 216 (14 UL)
Full Text
Peer Reviewed
See detailExtended Producer Responsibility in the Construction Sector through Blockchain, BIM and Smart Contract Technologies
Akbarieh, Arghavan UL; Carbone, William; Schäfer, Markus UL et al

Poster (2020, December 09)

Despite the enormous amount of raw or secondary materials flowing within the construction industry, the actual available volume of materials and their respective End-of-Lifecycle (EoL) treatment is not ... [more ▼]

Despite the enormous amount of raw or secondary materials flowing within the construction industry, the actual available volume of materials and their respective End-of-Lifecycle (EoL) treatment is not regulated nor uniform. On top of that, the EoL responsibility of different stakeholders after the future building deconstruction is confusing and disputable. Consequently, different sustainability policies and metrics suffer from inaccurately reported volumes of circulating materials in the economy. Hence, this article aims to find a new way to improve and regulate the EoL treatment of recyclable materials and to create value for them. The ultimate goal of the proposed framework is to make original manufacturers responsible for the EoL treatment of their recyclable construction materials and products under the Extended Producers Responsibility (EPR) policy that is enacted in the European Union for sustainable management of waste streams. Adhering to the EPR is difficult for buildings as they are long-term and complex assets. A high degree of transparency, accuracy and security is required to correctly track the lifecycle information of building parts and their respective manufacturers for the EPR implementation. For this purpose, a framework is conceptualised based on the immutability and transparency of blockchain technology to remove trust and trace barriers in the current supply chain. The proposed conceptual model results from the synergy of Building Information Modelling (BIM) technology, material and component banks, blockchain technology and smart contracts for the EoL treatment of recyclable materials. As a result, a data-driven and closed-loop material cycle will be accomplished. This paper demonstrates that through self-executing smart contracts, a clear line of responsibility and ownership could be defined while manufacturers could be made accountable in the post-consumer phase of their construction products. [less ▲]

Detailed reference viewed: 456 (18 UL)
Full Text
Peer Reviewed
See detailBIM-Based End-of-Lifecycle Decision Making and Digital Deconstruction: Literature Review
Akbarieh, Arghavan UL; Jayasinghe, Laddu Bhagya UL; Waldmann, Danièle UL et al

in Sustainability (2020), 12(7), 2670

This article is the second part of a two-part study, which explored the extent to which Building Information Modelling (BIM) is used for End-of-Lifecycle (EoL) scenario selection to minimise the ... [more ▼]

This article is the second part of a two-part study, which explored the extent to which Building Information Modelling (BIM) is used for End-of-Lifecycle (EoL) scenario selection to minimise the Construction and Demolition Waste (CDW). The conventional literature review presented here is based on the conceptual landscape that was obtained from the bibliometric and scientometric analysis in the first part of the study. Seven main academic research directions concerning the BIM-based EoL domain were found, including social and cultural factors, BIM-based Design for Deconstruction (DfD), BIM-based deconstruction, BIM-based EoL within LCA, BIM-aided waste management, Material and Component Banks (M/C Banks), off-site construction, interoperability and Industry Foundation Classes (IFC). The analysis highlights research gaps in the path of raw materials to reusable materials, i.e., from the deconstruction to M/C banks to DfD-based designs and then again to deconstruction. BIM-based EoL is suffering from a lack of a global framework. The existing solutions are based on local waste management policies and case-specific sustainability criteria selection. Another drawback of these ad hoc but well-developed BIM-based EoL prototypes is their use of specific proprietary BIM tools to support their framework. This disconnection between BIM tools and EoL tools is reportedly hindering the BIM-based EoL, while no IFC classes support the EoL phase information exchange. [less ▲]

Detailed reference viewed: 266 (35 UL)
Full Text
See detailIntroduction to BIM
Akbarieh, Arghavan UL

Speeches/Talks (2019)

Detailed reference viewed: 64 (3 UL)