References of "Adhav, Prasad 50039189"
     in
Bookmark and Share    
Full Text
See detailHEAT AND MASS TRANSFER BETWEEN XDEM & OPENFOAM USING PRECICE COUPLING LIBRARY
Adhav, Prasad UL; Besseron, Xavier UL; Estupinan Donoso, Alvaro Antonio UL et al

Scientific Conference (2022, June 09)

This work demonstrates the rapid development of a simulation environment to achieve Heat and Mass Transfer (HMT) between Discrete Element Methods (DEM) and Computa- tional Fluid Dynamics (CFD). The HMT ... [more ▼]

This work demonstrates the rapid development of a simulation environment to achieve Heat and Mass Transfer (HMT) between Discrete Element Methods (DEM) and Computa- tional Fluid Dynamics (CFD). The HMT coupling can be employed to simulate processes such as drying, pyrolysis, combustion, melting, solid-fluid reactions etc and have indus- trial applications such as biomass furnaces, boilers, heat exchangers, and flow through packed beds. This shows that diverse CFD features and solvers need to be coupled with DEM in order to achieve various applications mentioned above. The proposed DEM-CFD Eulerian-Lagrangian coupling for heat and mass transfer is achieved by employing the preCICE coupling library[1] on volumetric meshes. In our prototype, we use the eXtended Discrete Element Method (XDEM)[2] for handling DEM calculations and OpenFOAM for the CFD. The XDEM solver receives various CFD data fields such as fluid properties, and flow conditions exchanged through preCICE, which are used to set boundary conditions for particles. Various heat transfer and mass transfer laws have been implemented in XDEM to steer HMT source term computations. The heat and mass source terms computed by XDEM are transferred to CFD solver and added as source. These source terms represent particles in CFD. The generic coupling interface of preCICE, XDEM and its adapter allows to tackle a di- verse range of applications. We demonstrate the heat, mass & momentum coupling capa- bilities through various test cases and then compared with our legacy XDEM-OpenFOAM coupling and experimental results. [less ▲]

Detailed reference viewed: 266 (12 UL)
Full Text
See detailPhD Day - Complex Particle Laden Fluid Structure Interaction
Adhav, Prasad UL

Presentation (2022, May 10)

Detailed reference viewed: 28 (2 UL)
Full Text
See detailAWJC Nozzle simulation by 6-way coupling of DEM+CFD+FEM using preCICE coupling library
Adhav, Prasad UL; Besseron, Xavier UL; ROUSSET, Alban et al

Scientific Conference (2021, June 16)

The objective of this work is to study the particle-laden fluid-structure interaction within an Abrasive Water Jet Cutting Nozzle. Such coupling is needed to study the erosion phenomena caused by the ... [more ▼]

The objective of this work is to study the particle-laden fluid-structure interaction within an Abrasive Water Jet Cutting Nozzle. Such coupling is needed to study the erosion phenomena caused by the abrasive particles inside the nozzle. So far, the erosion in the nozzle was predicted only through the number of collisions, using only a simple DEM+CFD[1] coupling. To improve these predictions, we extend our model to a 6-way Eulerian-Lagrangian momentum coupling with DEM+CFD+FEM to account for deformations and vibrations in the nozzle. Our prototype uses the preCICE coupling library[2] to couple 3 numerical solvers: XDEM[3] (for the particle motion), OpenFOAM[4] (for the water jet), and CalculiX[5] (for the nozzle deformation). XDEM handles all the particle motions based on the fluid properties and flow conditions, and it calculates drag terms. In the fluid solver, particles are modeled as drag and are injected in the momentum equation as a source term. CalculiX uses the forces coming from the fluid solver and XDEM as boundary conditions to solve for the displacements. It is also used for computing the vibrations induced by particle impacts. . The preliminary 6-way DEM+CFD+FEM coupled simulation is able to capture the complex particle-laden multiphase fluid-structure interaction inside AWJC Nozzle. The erosion concentration zones are identified and are compared to DEM+CFD coupling[1]. The results obtained are planned to be used for predicting erosion intensity in addition to the concentration zones. In the future, we aim to compare the erosions predictions to experimental data in order to evaluate the suitability of our approach. The FEM module of the coupled simulation captures the vibration frequency induced by particles and compares it with the natural frequency of the nozzle. Thus opening up opportunities for further investigation and improvement of the Nozzle design. [less ▲]

Detailed reference viewed: 143 (13 UL)
Full Text
See detailEvaluation of erosion inside AWJC Nozzle by 6-way coupling of DEM+CFD+FEM using preCICE
Adhav, Prasad UL; Besseron, Xavier UL; Rousset, Alban et al

Presentation (2021, February 23)

The objective of this work is to study the particle‐induced erosion within a nozzle for abrasive cutting. So far, the erosion in the nozzle was predicted only through the number of collisions, using only ... [more ▼]

The objective of this work is to study the particle‐induced erosion within a nozzle for abrasive cutting. So far, the erosion in the nozzle was predicted only through the number of collisions, using only a simple DEM+CFD coupling. To improve these predictions, we extend our model to a 6‐way momentum coupling with DEM+CFD+FEM to account for deformations and vibrations in the nozzle. Our prototype uses preCICE to couple 3 numerical solvers: XDEM (for the particle motion), OpenFOAM (for the water jet), and CalculiX (for the nozzle deformation). The OpenFOAM adapter has been adapted to add particles drag, which is modeled as semi‐implicit porosity, implicit and explicit drag terms injected to OpenFOAM solver through fvOptions. This 6‐way coupling between DEM+CFD+FEM brings the simulation of the particle‐laden multiphase flow inside the abrasive cutting nozzle close to the real‐life conditions. Thus opening up opportunities for further investigation and improvement of the Nozzle design. [less ▲]

Detailed reference viewed: 119 (10 UL)