![]() Adeleye, Damilola ![]() Doctoral thesis (2022) Cu(In,Ga)S2 is a chalcopyrite material suitable as the higher bandgap top cell in tandem applications in next generation multijunction solar cells. This owes primarily to the tunability of its bandgap ... [more ▼] Cu(In,Ga)S2 is a chalcopyrite material suitable as the higher bandgap top cell in tandem applications in next generation multijunction solar cells. This owes primarily to the tunability of its bandgap from 1.5 eV in CuInS2 to 2.45 eV in CuGaS2, and its relative stability over time. Currently, a major hinderance to the potential use of Cu(In,Ga)S2 in tandem capacity remains a deficient single-junction device performance in the form of low open-circuit voltage (VOC) and low efficiency. Aside interfacial recombination which leads to losses in the completed Cu(In,Ga)S2 solar cell, deficiencies stems from a low optoelectronic quality of the Cu(In,Ga)S2 absorber quantified by the quasi-Fermi level splitting (QFLS) and which serves as the upper limit of VOC achievable by a solar cell device. In this thesis, the QFLS is compared with the theoretical VOC (SQ-VOC) in the radiative limit, and “SQ-VOC deficit” is defined to compare the difference between SQ-VOC and QFLS as a comparable measure of the optoelectronic deficiency in the absorber material. In contrast to the counterpart Cu(In,Ga)Se2 absorber which has produced highly efficient solar cell devices, the Cu(In,Ga)S2 absorber still suffers from a high SQ-VOC deficit. However, SQ-VOC deficit in Cu(In,Ga)S2 can be reduced by growing the absorbers under Cu-deficient conditions. For the effective use of Cu(In,Ga)S2 as the top cell in tandem with Si or Cu(In,Ga)Se2 as the bottom cell, an optimum bandgap of 1.6-1.7 eV is required, and this is realized in absorbers with Ga content up to [Ga]/([Ga]+[In]) ratio of 0.30-0.35. However, the increase of Ga in Cu-poor Cu(In,Ga)S2 poses a challenge to the structural and optoelectronic quality of the absorber, resulting from the formation of segregated Ga phases with steep Ga/bandgap gradient which constitutes a limitation to the quality of the Cu(In,Ga)S2 absorber layer with a highSQ-VOC deficit and low open circuit voltage and overall poor performance of the finalized solar cell. In this work, the phase segregation in Cu(In,Ga)S2 has been circumvented by employing higher substrate temperatures and adapting the Ga flux during the first-stage of deposition when growing the Cu(In,Ga)S2 absorbers. A more homogenous Cu(In,Ga)S2 phase and improved Ga/bandgap gradient is achieved by optimizing the Ga flux at higher substrate temperature to obtain a Cu(In,Ga)S2 absorber with high optoelectronic quality and low SQ-VOC deficit. Additionally, the variation of the Cu-rich phase when growing the Cu(In,Ga)S2 absorber layers was found to not only alter the notch profile and bandgap minimum of the absorbers, but also influence the optoelectronic quality of the absorber. Shorter Cu-rich phase in the absorbers led to narrower notch profile and higher bandgap. Ultimately, several steps in the three-stage deposition method used for processing the Cu(In,Ga)S2 absorbers were revised to enhanced the overall quality of the absorbers. Consequently, the SQ-VOC deficit in high bandgap Cu(In,Ga)S2 absorbers is significantly reduced, leading to excellent device performance. This thesis also examines the temperature- and compositional-related optoelectronic improvement in pure Cu-rich CuInS2 absorbers without Ga, where improvement in QFLS was initially linked to a reduction of nonradiative recombination channels with higher deposition temperatures and increase in Cu content. Findings through photoluminescence decay measurements show that the origin of the improved QFLS in CuInS2 is rather linked to changes in doping levels with variations of deposition temperature and Cu content. Finally, in order to understand and gain insight into the influence of Ga in Cu(In,Ga)S2, the electronic structure of CuGaS2 absorbers was investigated in dependence of excitation intensity and temperature by low temperature photoluminescence measurements. A shallow donor level and three acceptor levels were detected. It was found that similar acceptor levels in CuInSe2 and CuGaSe2 which are otherwise shallow become deeper in CuGaS2. These deep defects serve as nonradiative recombination channels and their appearance in the Ga-containing compound is be detrimental to the optoelectronic quality of Cu(In,Ga)S2 absorbers as Ga content is increased therefore limiting the optimum performance of Cu(In,Ga)S2 devices. [less ▲] Detailed reference viewed: 82 (16 UL)![]() Siebentritt, Susanne ![]() ![]() in Faraday Discussions (2022) Absolute photoluminescence measurements present a tool to predict the quality of photovoltaic absorber materials before finishing the solar cells. Quasi Fermi level splitting predicts the maximal open ... [more ▼] Absolute photoluminescence measurements present a tool to predict the quality of photovoltaic absorber materials before finishing the solar cells. Quasi Fermi level splitting predicts the maximal open circuit voltage. However, various methods to extract quasi Fermi level splitting are plagued by systematic errors in the range of 10–20 meV. It is important to differentiate between the radiative loss and the shift of the emission maximum. They are not the same and when using the emission maximum as the “radiative” band gap to extract the quasi Fermi level splitting from the radiative efficiency, the quasi Fermi level splitting is 10 to 40 meV too low for a typical broadening of the emission spectrum. However, radiative efficiency presents an ideal tool to compare different materials without determining the quasi Fermi level splitting. For comparison with the open circuit voltage, a fit of the high energy slope to generalised Planck’s law gives more reliable results if the fitted temperature, i.e. the slope of the high energy part, is close to the actual measurement temperature. Generalised Planck’s law also allows the extraction of a non-absolute absorptance spectrum, which enables a comparison between the emission maximum energy and the absorption edge. We discuss the errors and the indications when they are negligible and when not. [less ▲] Detailed reference viewed: 85 (14 UL)![]() Sood, Mohit ![]() ![]() ![]() in Faraday Discussions of the Chemical Society (2022) Detailed reference viewed: 29 (0 UL)![]() Debot, Alice ![]() ![]() in Thin Solid Films (2022) We report an environmentally friendly inkjet-printed indium sulfide (In2S3) buffer layer using benign chemistry and processing conditions. A pre-synthesized indium-thiourea compound is dissolved in a ... [more ▼] We report an environmentally friendly inkjet-printed indium sulfide (In2S3) buffer layer using benign chemistry and processing conditions. A pre-synthesized indium-thiourea compound is dissolved in a mixture of water and ethanol, inkjet printed on a Cu(In,Ga)(S,Se)2 absorber and annealed in air. The buffer layer shows a β-In2S3 structure with few organic impurities and band gap in the range of 2.3 eV. An ultraviolet ozone treatment applied to the surface of the absorber prior to inkjet printing of the precursor is used to improve the wettability of the ink and therefore the surface coverage of the buffer on the absorber layer. The device with a fully covering In2S3 layer shows better open circuit voltage and fill factor than the device with a partially covering In2S3 layer. The best In2S3 device showed a light to electric power conversion efficiency similar to the reference cadmium sulfide buffer layer device. Good wettability conditions are therefore essential for higher efficiency solar cells when the buffer layer is inkjet-printed. [less ▲] Detailed reference viewed: 88 (9 UL)![]() Siebentritt, Susanne ![]() ![]() ![]() in Physica Status Solidi. Rapid Research Letters (2022), 2200126 Detailed reference viewed: 138 (8 UL)![]() ; ; et al in Advanced Functional Materials (2022) Detailed reference viewed: 23 (4 UL)![]() Sood, Mohit ![]() ![]() in Journal of Physics : Energy (2022), 4 Detailed reference viewed: 30 (1 UL)![]() Shukla, Sudhanshu ![]() ![]() ![]() in Joule (2021), 5 Detailed reference viewed: 165 (10 UL)![]() Shukla, Sudhanshu ![]() ![]() ![]() in Physical Review Materials (2021), 5 Detailed reference viewed: 133 (7 UL)![]() Adeleye, Damilola ![]() ![]() ![]() in Materials Research Express (2021), 8 Detailed reference viewed: 296 (16 UL)![]() Chu, van Ben ![]() ![]() ![]() in ACS Applied Materials and Interfaces (2021), 13 Detailed reference viewed: 203 (13 UL)![]() Sood, Mohit ![]() ![]() ![]() in Progress in Photovoltaics (2020) Post-device heat treatment (HT) in chalcopyrite [Cu(In,Ga)(S,Se)2] solar cells is known to improve the performance of the devices. However, this HT is only beneficial for devices made with absorbers grown ... [more ▼] Post-device heat treatment (HT) in chalcopyrite [Cu(In,Ga)(S,Se)2] solar cells is known to improve the performance of the devices. However, this HT is only beneficial for devices made with absorbers grown under Cu-poor conditions but not under Cu excess.. We present a systematic study to understand the effects of HT on CuInSe2 and CuInS2 solar cells. The study is performed for CuInSe2 solar cells grown under Cu-rich and Cu-poor chemical potential prepared with both CdS and Zn(O,S) buffer layers. In addition, we also study Cu-rich CuInS2 solar cells prepared with the suitable Zn(O,S) buffer layer. For Cu-poor selenide device low-temperature HT leads to passivation of bulk, whereas in Cu-rich devices no such passivation was observed. The Cu-rich devices are hampered by a large shunt. The HT decreases shunt resistance in Cu-rich selenides, whereas it increases shunt resistance in Cu-rich sulfides.. The origin of these changes in device performance was investigated with capacitance-voltage measurement which shows the considerable decrease in carrier concentration with HT in Cu-poor CuInSe2, and temperature dependent current-voltage measurements show the presence of barrier for minority carriers. Together with numerical simulations, these findings support a highly-doped interfacial p+ layer device model in Cu-rich selenide absorbers and explain the discrepancy between Cu-poor and Curich device performance. Our findings provide insights into how the same treatment can have a completely different effect on the device depending on the composition of the absorber. [less ▲] Detailed reference viewed: 175 (11 UL) |
||