References of "???"
     in
Bookmark and Share    
Full Text
See detailUltra-rare constrained missense variants in the epilepsies: Shared and specific enrichment patterns in neuronal gene-sets 2021.04.18.440264
Koko, Mahmoud; Krause, Roland UL; Sander, Thomas et al

E-print/Working paper (2021)

Background: Burden analysis in epilepsy has shown an excess of deleterious ultra-rare variants (URVs) in few gene-sets, such as known epilepsy genes, constrained genes, ion channel or GABAA receptor genes ... [more ▼]

Background: Burden analysis in epilepsy has shown an excess of deleterious ultra-rare variants (URVs) in few gene-sets, such as known epilepsy genes, constrained genes, ion channel or GABAA receptor genes. We set out to investigate the burden of URVs in a comprehensive range of gene-sets presumed to be implicated in epileptogenesis. Methods: We investigated several constraint and conservation-based strategies to study whole exome sequencing data from European individuals with developmental and epileptic encephalopathies (DEE, n = 1,003), genetic generalized epilepsy (GGE, n = 3,064), and non-acquired focal epilepsy (NAFE, n = 3,522), collected by the Epi25 Collaborative, compared to 3,962 ancestry-matched controls. The burden of 12 URVs types in 92 gene-sets was compared between epilepsy cases (DDE, GGE, NAFE) and controls using logistic regression analysis. Results: Burden analysis of brain-expressed genes revealed an excess of different URVs types in all three epilepsy categories which was largest for constrained missense variants. The URVs burden was prominent in neuron-specific, synaptic and developmental genes as well as genes encoding ion channels and receptors, and it was generally higher for DEE and GGE compared to NAFE. The patterns of URVs burden in gene-sets expressed in inhibitory vs. excitatory neurons or receptors suggested a high burden in both in DEE but a differential involvement of inhibitory genes in GGE, while excitatory genes were predominantly affected in NAFE. Top ranking susceptibility genes from a recent genome-wide association study (GWAS) of generalized and focal epilepsies displayed a higher URVs burden in constrained coding regions in GGE and NAFE, respectively. Conclusions: Using exome-based gene-set burden analysis, we demonstrate that missense URVs affecting mainly constrained sites are enriched in neuronal genes in both common and rare severe epilepsy syndromes. Our results indicate a differential impact of these URVs in genes expressed in inhibitory vs. excitatory neurons and receptors in generalized vs. focal epilepsies. The excess of URVs in top-ranking GWAS risk-genes suggests a convergence of rare deleterious and common risk-variants in the pathogenesis of generalized and focal epilepsies. [less ▲]

Detailed reference viewed: 79 (5 UL)
Full Text
Peer Reviewed
See detailIn Vitro Red Blood Cell Segregation in Sickle Cell Anemia
Claveria, Viviana; Connes, Philippe; Lanotte, Luca et al

in FRONTIERS IN PHYSICS (2021), 9

Red blood cells in sickle cell anemia (sRBC) are more heterogeneous in their physical properties than healthy red blood cells, spanning adhesiveness, rigidity, density, size, and shape. sRBC with ... [more ▼]

Red blood cells in sickle cell anemia (sRBC) are more heterogeneous in their physical properties than healthy red blood cells, spanning adhesiveness, rigidity, density, size, and shape. sRBC with increased adhesiveness to the vascular wall would trigger vaso-occlusive like complications, a hallmark of sickle cell anemia. We investigated whether segregation occurs among sRBC flowing in micron-sized channels and tested the impact of aggregation on segregation. Two populations of sRBC of different densities were separated, labeled, and mixed again. The mixed suspension was flowed within glass capillary tubes at different pressure-drops, hematocrit, and suspending media that promoted or not cell aggregation. Observations were made at a fixed channel position. The mean flow velocity was obtained by using the cells as tracking particles, and the cell depleted layer (CDL) by measuring the distance from the cell core border to the channel wall. The labeled sRBC were identified by stopping the flow and scanning the cells within the channel section. The tube hematocrit was estimated from the number of fluorescence cells identified in the field of view. In non-aggregating media, our results showed a heterogeneous distribution of sRBC according to their density: low-density sRBC population remained closer to the center of the channel, while the densest cells segregated towards the walls. There was no impact of the mean flow velocity and little impact of hematocrit. This segregation heterogeneity could influence the ability of sRBC to adhere to the vascular wall and slow down blood flow. However, promoting aggregation inhibited segregation while CDL thickness was enhanced by aggregation, highlighting a potential protective role against vaso-occlusion in patients with sickle cell anemia. [less ▲]

Detailed reference viewed: 78 (0 UL)
Full Text
Peer Reviewed
See detailThe TRPV2 channel mediates Ca2+ influx and the Delta 9-THC-dependent decrease in osmotic fragility in red blood cells
Belkacemi, Anouar; Fecher-Trost, Claudia; Tinschert, Rene et al

in HAEMATOLOGICA (2021), 106(8), 2246-2250

Detailed reference viewed: 30 (1 UL)
Full Text
See detailGenome sequencing analysis identifies new loci associated with Lewy body dementia and provides insights into the complex genetic architecture
Chia, Ruth; Sabir, Marya S.; Bandres-Ciga, Sara et al

E-print/Working paper (2020)

The genetic basis of Lewy body dementia (LBD) is not well understood. Here, we performed whole-genome sequencing in large cohorts of LBD cases and neurologically healthy controls to study the genetic ... [more ▼]

The genetic basis of Lewy body dementia (LBD) is not well understood. Here, we performed whole-genome sequencing in large cohorts of LBD cases and neurologically healthy controls to study the genetic architecture of this understudied form of dementia and to generate a resource for the scientific community. Genome-wide association analysis identified five independent risk loci, whereas genome-wide gene-aggregation tests implicated mutations in the gene GBA. Genetic risk scores demonstrate that LBD shares risk profiles and pathways with Alzheimer’s and Parkinson’s disease, providing a deeper molecular understanding of the complex genetic architecture of this age-related neurodegenerative condition.Competing Interest StatementThomas G. Beach is a consultant for Prothena, Vivid Genomics and Avid Radiopharmaceuticals. He is a scientific advisory board member for Vivid Genomics. John A. Hardy, Huw R. Morris, Stuart Pickering-Brown, Andrew B. Singleton, and Bryan J. Traynor hold US, EU and Canadian patents on the clinical testing and therapeutic intervention for the hexanucleotide repeat expansion of C9orf72. Michael A. Nalls is supported by a consulting contract between Data Tecnica International and the National Institute on Aging, NIH, Bethesda, MD, USA; as a possible conflict of interest Dr. Nalls also consults for Neuron23 Inc., Lysosomal Therapeutics Inc., Illumina Inc., the Michael J. Fox Foundation and Vivid Genomics among others. Jose A. Palma is an editorial board member of Movement Disorders, Parkinsonism & Related Disorders, BMC Neurology, and Clinical Autonomic Research. Bradley F. Boeve, James Leverenz, and Sonja W. Scholz serve on the Scientific Advisory Council of the Lewy Body Dementia Association. Sonja W. Scholz is an editorial board member for the Journal of Parkinson's Disease. Bryan J. Traynor is an editorial board member for JAMA Neurology; Journal of Neurology, Neurosurgery, and Psychiatry; Brain; and Neurobiology of Aging. Zbigniew K. Wszolek serves as a principal investigator or co-principal investigator on Abbvie, Inc. (M15-562 and M15-563), Biogen, Inc. (228PD201) grant, and Biohaven Pharmaceuticals, Inc. (BHV4157-206 and BHV3241-301). Zbigniew K. Wszolek serves as the principal investigator of the Mayo Clinic American Parkinson Disease Association (APDA) Information and Referral Center, and as co-principal investigator of the Mayo Clinic APDA Center for Advanced Research. All other authors report no competing interests. [less ▲]

Detailed reference viewed: 209 (3 UL)
Full Text
See detailPredicting Functional Effects of Missense Variants in Voltage-Gated Sodium and Calcium Channels
Heyne, Henrike O.; Baez-Nieto, David; Iqbal, Sumaiya et al

E-print/Working paper (2019)

Malfunctions of voltage-gated sodium and calcium channels (SCN and CACNA1 genes) have been associated with severe neurologic, psychiatric, cardiac and other diseases. Altered channel activity is ... [more ▼]

Malfunctions of voltage-gated sodium and calcium channels (SCN and CACNA1 genes) have been associated with severe neurologic, psychiatric, cardiac and other diseases. Altered channel activity is frequently grouped into gain or loss of ion channel function (GOF or LOF, respectively) which is not only corresponding to clinical disease manifestations, but also to differences in drug response. Experimental studies of channel function are therefore important, but laborious and usually focus only on a few variants at a time. Based on known gene-disease-mechanisms, we here infer LOF (518 variants) and GOF (309 variants) of likely pathogenic variants from disease phenotypes of variant carriers. We show regional clustering of inferred GOF and LOF variants, respectively, across the alignment of the entire gene family, suggesting shared pathomechanisms in the SCN/CACNA1 genes. By training a machine learning model on sequence- and structure-based features we predict LOF- or GOF- associated disease phenotypes (ROC = 0.85) of likely pathogenic missense variants. We then successfully validate the GOF versus LOF prediction on 87 functionally tested variants in SCN1/2/8A and CACNA1I (ROC = 0.73) and in exome-wide data from > 100.000 cases and controls. Ultimately, functional prediction of missense variants in clinically relevant genes will facilitate precision medicine in clinical practice. [less ▲]

Detailed reference viewed: 198 (0 UL)