References of "del Sol Mesa, Antonio 50001581"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailGene regulatory network analysis supports inflammation as a key neurodegeneration process in prion disease.
Crespo, Isaac UL; Rump, Kirsten UL; Jurkowski, Wiktor UL et al

in BMC Systems Biology (2012), 6(132),

The activation of immune cells in the brain is believed to be one of the earliest events in prion disease development, where misfolded PrionSc protein deposits are thought to act as irritants leading to a ... [more ▼]

The activation of immune cells in the brain is believed to be one of the earliest events in prion disease development, where misfolded PrionSc protein deposits are thought to act as irritants leading to a series of events that culminate in neuronal cell dysfunction and death. The role of these events in prion disease though is still a matter of debate. To elucidate the mechanisms leading from abnormal protein deposition to neuronal injury, we have performed a detailed network analysis of genes differentially expressed in several mouse prion models [less ▲]

Detailed reference viewed: 159 (15 UL)
Full Text
Peer Reviewed
See detailA Novel Network Integrating a miRNA-203/SNAI1 Feedback Loop which Regulates Epithelial to Mesenchymal Transition.
Moes, Michèle UL; Le Béchec, Antony UL; Crespo, Isaac UL et al

in PLoS ONE (2012), 7(4), 35440

Background: The majority of human cancer deaths are caused by metastasis. The metastatic dissemination is initiated by the breakdown of epithelial cell homeostasis. During this phenomenon, referred to as ... [more ▼]

Background: The majority of human cancer deaths are caused by metastasis. The metastatic dissemination is initiated by the breakdown of epithelial cell homeostasis. During this phenomenon, referred to as epithelial to mesenchymal transition (EMT), cells change their genetic and trancriptomic program leading to phenotypic and functional alterations. The challenge of understanding this dynamic process resides in unraveling regulatory networks involving master transcription factors (e.g. SNAI1/2, ZEB1/2 and TWIST1) and microRNAs. Here we investigated microRNAs regulated by SNAI1 and their potential role in the regulatory networks underlying epithelial plasticity. Results: By a large-scale analysis on epithelial plasticity, we highlighted miR-203 and its molecular link with SNAI1 and the miR-200 family, key regulators of epithelial homeostasis. During SNAI1-induced EMT in MCF7 breast cancer cells, miR-203 and miR-200 family members were repressed in a timely correlated manner. Importantly, miR-203 repressed endogenous SNAI1, forming a double negative miR203/SNAI1 feedback loop. We integrated this novel miR203/SNAI1 with the known miR200/ZEB feedback loops to construct an a priori EMT core network. Dynamic simulations revealed stable epithelial and mesenchymal states, and underscored the crucial role of the miR203/SNAI1 feedback loop in state transitions underlying epithelial plasticity. Conclusion: By combining computational biology and experimental approaches, we propose a novel EMT core network integrating two fundamental negative feedback loops, miR203/SNAI1 and miR200/ZEB. Altogether our analysis implies that this novel EMT core network could function as a switch controlling epithelial cell plasticity during differentiation and cancer progression. [less ▲]

Detailed reference viewed: 110 (3 UL)
Full Text
Peer Reviewed
See detailEvolutionary conservation and network structure characterize genes of phenotypic relevance for mitosis in human
Ostaszewski, Marek UL; Eifes, Serge UL; del Sol Mesa, Antonio UL

in PLoS ONE (2012), 7(5), 36488

The impact of gene silencing on cellular phenotypes is difficult to establish due to the complexity of interactions in the associated biological processes and pathways. A recent genome-wide RNA knock-down ... [more ▼]

The impact of gene silencing on cellular phenotypes is difficult to establish due to the complexity of interactions in the associated biological processes and pathways. A recent genome-wide RNA knock-down study both identified and phenotypically characterized a set of important genes for the cell cycle in HeLa cells. Here, we combine a molecular interaction network analysis, based on physical and functional protein interactions, in conjunction with evolutionary information, to elucidate the common biological and topological properties of these key genes. Our results show that these genes tend to be conserved with their corresponding protein interactions across several species and are key constituents of the evolutionary conserved molecular interaction network. Moreover, a group of bistable network motifs is found to be conserved within this network, which are likely to influence the network stability and therefore the robustness of cellular functioning. They form a cluster, which displays functional homogeneity and this cluster is significantly enriched in genes phenotypically relevant for mitosis. Additional results reveal a relationship between specific cellular processes and the phenotypic outcomes induced by gene silencing. This study introduces new ideas regarding the relationship between genotype and phenotype in the context of the cell cycle. We show that the analysis of molecular interaction networks can result in the identification of genes relevant to cellular processes, which is a promising avenue for future research. [less ▲]

Detailed reference viewed: 147 (3 UL)
Full Text
Peer Reviewed
See detailPPARγ population shift produces disease-related changes in molecular networks associated with metabolic syndrome
Jurkowski, Wiktor UL; Roomp, Kirsten UL; Crespo, Isaac UL et al

in Cell Death & Disease (2011), 2(8), 192

Peroxisome proliferator-activated receptor gamma (PPARγ) is a key regulator of adipocyte differentiation and has an important role in metabolic syndrome. Phosphorylation of the receptor's ligand-binding ... [more ▼]

Peroxisome proliferator-activated receptor gamma (PPARγ) is a key regulator of adipocyte differentiation and has an important role in metabolic syndrome. Phosphorylation of the receptor's ligand-binding domain at serine 273 has been shown to change the expression of a large number of genes implicated in obesity. The difference in gene expression seen when comparing wild-type phosphorylated with mutant non-phosphorylated PPARγ may have important consequences for the cellular molecular network, the state of which can be shifted from the healthy to a stable diseased state. We found that a group of differentially expressed genes are involved in bi-stable switches and form a core network, the state of which changes with disease progression. These findings support the idea that bi-stable switches may be a mechanism for locking the core gene network into a diseased state and for efficiently propagating perturbations to more distant regions of the network. A structural analysis of the PPARγ-RXRα dimer complex supports the hypothesis of a major structural change between the two states, and this may represent an important mechanism leading to the differential expression observed in the core network. [less ▲]

Detailed reference viewed: 220 (17 UL)
Full Text
Peer Reviewed
See detailDiseases as network perturbations
del Sol Mesa, Antonio UL; Balling, Rudi UL; Hood, Leroy UL et al

in Current Opinion in Biotechnology (2010), 21(4), 566-571

The tremendous amount of the data obtained from the study of complex biological systems changes our view on the pathogenesis of human diseases. Instead of looking at individual components of biological ... [more ▼]

The tremendous amount of the data obtained from the study of complex biological systems changes our view on the pathogenesis of human diseases. Instead of looking at individual components of biological processes, we focus our attention more on the interaction and dynamics of biological systems. A network representation and analysis of the physiology and pathophysiology of biological systems is an effective way to study their complex behavior. Specific perturbations can trigger cascades of failures, which lead to the malfunctioning of cellular networks and as a result to the development of specific diseases. In this review we discuss recent developments in the field of disease network analysis and highlight some of the topics and views that we think are important for understanding network-based disease mechanisms. [less ▲]

Detailed reference viewed: 210 (20 UL)
Full Text
Peer Reviewed
See detailProtein allostery, signal transmission and dynamics: a classification scheme of allosteric mechanisms
Tsai, C. J.; del Sol Mesa, Antonio UL; Nussinov, R.

in Molecular Biosystems (2009), 5(3), 207-16

Detailed reference viewed: 116 (1 UL)
Full Text
Peer Reviewed
See detailResidues crucial for maintaining short paths in network communication mediate signaling in proteins
del Sol Mesa, Antonio UL; Fujihashi, Hirotomo; Amoros, Dolors et al

in Molecular Systems Biology (2009), 2

Here, we represent protein structures as residue interacting networks, which are assumed to involve a permanent flowof information between amino acids. By removal of nodes from the protein network, we ... [more ▼]

Here, we represent protein structures as residue interacting networks, which are assumed to involve a permanent flowof information between amino acids. By removal of nodes from the protein network, we identify fold centrally conserved residues, which are crucial for sustaining the shortest pathways and thus play key roles in long-range interactions. Analysis of seven protein families (myoglobins, G-protein-coupled receptors, the trypsin class of serine proteases, hemoglobins, oligosaccharide phosphorylases, nuclear receptor ligand-binding domains and retroviral proteases) confirms that experimentally many of these residues are important for allosteric communication. The agreement between the centrally conserved residues, which are key in preserving short path lengths, and residues experimentally suggested to mediate signaling further illustrates that topology plays an important role in network communication. Protein folds have evolved under constraints imposed by function. To maintain function, protein structures need to be robust to mutational events. On the other hand, robustness is accompanied by an extreme sensitivity at some crucial sites. Thus, here we propose that centrally conserved residues, whose removal increases the characteristic path length in protein networks, may relate to the system fragility. [less ▲]

Detailed reference viewed: 102 (2 UL)
Full Text
Peer Reviewed
See detailMethyl side-chain dynamics prediction based on protein structure
Carbonell, P.; del Sol Mesa, Antonio UL

in Bioinformatics (2009), 25(19), 2552-8

Detailed reference viewed: 89 (8 UL)
Full Text
Peer Reviewed
See detailEnergetic determinants of protein binding specificity: insights into protein interaction networks
Carbonell, P.; Nussinov, R.; del Sol Mesa, Antonio UL

in Proteomics (2009), 9(7), 1744-53

Detailed reference viewed: 93 (0 UL)
Full Text
Peer Reviewed
See detailThe origin of Allosteric Modulation: Multiple Pre-existing Pathways Selection
del Sol Mesa, Antonio UL; Tsai, Chung-Jung; Ma, Buyong et al

in Structure (2009), 17(8), 1042-1050

Detailed reference viewed: 48 (1 UL)
Peer Reviewed
See detailAllostery: absence of a change in shape does not imply that allostery is not at play.
Tsai, Chung-Jung; del Sol Mesa, Antonio UL; Nussinov, Ruth

in Journal of molecular biology (2008), 378(1), 1-11

Allostery is essential for controlled catalysis, signal transmission, receptor trafficking, turning genes on and off, and apoptosis. It governs the organism's response to environmental and metabolic cues ... [more ▼]

Allostery is essential for controlled catalysis, signal transmission, receptor trafficking, turning genes on and off, and apoptosis. It governs the organism's response to environmental and metabolic cues, dictating transient partner interactions in the cellular network. Textbooks taught us that allostery is a change of shape at one site on the protein surface brought about by ligand binding to another. For several years, it has been broadly accepted that the change of shape is not induced; rather, it is observed simply because a larger protein population presents it. Current data indicate that while side chains can reorient and rewire, allostery may not even involve a change of (backbone) shape. Assuming that the enthalpy change does not reverse the free-energy change due to the change in entropy, entropy is mainly responsible for binding. [less ▲]

Detailed reference viewed: 161 (0 UL)
Peer Reviewed
See detailLigand binding and circular permutation modify residue interaction network in DHFR.
Hu, Zengjian; Bowen, Donnell; Southerland, William M. et al

in PLoS computational biology (2007), 3(6), 117

Residue interaction networks and loop motions are important for catalysis in dihydrofolate reductase (DHFR). Here, we investigate the effects of ligand binding and chain connectivity on network ... [more ▼]

Residue interaction networks and loop motions are important for catalysis in dihydrofolate reductase (DHFR). Here, we investigate the effects of ligand binding and chain connectivity on network communication in DHFR. We carry out systematic network analysis and molecular dynamics simulations of the native DHFR and 19 of its circularly permuted variants by breaking the chain connections in ten folding element regions and in nine nonfolding element regions as observed by experiment. Our studies suggest that chain cleavage in folding element areas may deactivate DHFR due to large perturbations in the network properties near the active site. The protein active site is near or coincides with residues through which the shortest paths in the residue interaction network tend to go. Further, our network analysis reveals that ligand binding has "network-bridging effects" on the DHFR structure. Our results suggest that ligand binding leads to a modification, with most of the interaction networks now passing through the cofactor, shortening the average shortest path. Ligand binding at the active site has profound effects on the network centrality, especially the closeness. [less ▲]

Detailed reference viewed: 76 (0 UL)
Peer Reviewed
See detailThe modular organization of domain structures: insights into protein-protein binding.
del Sol Mesa, Antonio UL; Carbonell, Pablo

in PLoS computational biology (2007), 3(12), 239

Domains are the building blocks of proteins and play a crucial role in protein-protein interactions. Here, we propose a new approach for the analysis and prediction of domain-domain interfaces. Our method ... [more ▼]

Domains are the building blocks of proteins and play a crucial role in protein-protein interactions. Here, we propose a new approach for the analysis and prediction of domain-domain interfaces. Our method, which relies on the representation of domains as residue-interacting networks, finds an optimal decomposition of domain structures into modules. The resulting modules comprise highly cooperative residues, which exhibit few connections with other modules. We found that non-overlapping binding sites in a domain, involved in different domain-domain interactions, are generally contained in different modules. This observation indicates that our modular decomposition is able to separate protein domains into regions with specialized functions. Our results show that modules with high modularity values identify binding site regions, demonstrating the predictive character of modularity. Furthermore, the combination of modularity with other characteristics, such as sequence conservation or surface patches, was found to improve our predictions. In an attempt to give a physical interpretation to the modular architecture of domains, we analyzed in detail six examples of protein domains with available experimental binding data. The modular configuration of the TEM1-beta-lactamase binding site illustrates the energetic independence of hotspots located in different modules and the cooperativity of those sited within the same modules. The energetic and structural cooperativity between intramodular residues is also clearly shown in the example of the chymotrypsin inhibitor, where non-binding site residues have a synergistic effect on binding. Interestingly, the binding site of the T cell receptor beta chain variable domain 2.1 is contained in one module, which includes structurally distant hot regions displaying positive cooperativity. These findings support the idea that modules possess certain functional and energetic independence. A modular organization of binding sites confers robustness and flexibility to the performance of the functional activity, and facilitates the evolution of protein interactions. [less ▲]

Detailed reference viewed: 79 (1 UL)
Peer Reviewed
See detailModular architecture of protein structures and allosteric communications: potential implications for signaling proteins and regulatory linkages.
del Sol Mesa, Antonio UL; Arauzo-Bravo, Marcos J.; Amoros, Dolors et al

in Genome biology (2007), 8(5), 92

BACKGROUND: Allosteric communications are vital for cellular signaling. Here we explore a relationship between protein architectural organization and shortcuts in signaling pathways. RESULTS: We show that ... [more ▼]

BACKGROUND: Allosteric communications are vital for cellular signaling. Here we explore a relationship between protein architectural organization and shortcuts in signaling pathways. RESULTS: We show that protein domains consist of modules interconnected by residues that mediate signaling through the shortest pathways. These mediating residues tend to be located at the inter-modular boundaries, which are more rigid and display a larger number of long-range interactions than intra-modular regions. The inter-modular boundaries contain most of the residues centrally conserved in the protein fold, which may be crucial for information transfer between amino acids. Our approach to modular decomposition relies on a representation of protein structures as residue-interacting networks, and removal of the most central residue contacts, which are assumed to be crucial for allosteric communications. The modular decomposition of 100 multi-domain protein structures indicates that modules constitute the building blocks of domains. The analysis of 13 allosteric proteins revealed that modules characterize experimentally identified functional regions. Based on the study of an additional functionally annotated dataset of 115 proteins, we propose that high-modularity modules include functional sites and are the basic functional units. We provide examples (the Galphas subunit and P450 cytochromes) to illustrate that the modular architecture of active sites is linked to their functional specialization. CONCLUSION: Our method decomposes protein structures into modules, allowing the study of signal transmission between functional sites. A modular configuration might be advantageous: it allows signaling proteins to expand their regulatory linkages and may elicit a broader range of control mechanisms either via modular combinations or through modulation of inter-modular linkages. [less ▲]

Detailed reference viewed: 87 (0 UL)
Peer Reviewed
See detailResidue centrality, functionally important residues, and active site shape: analysis of enzyme and non-enzyme families.
del Sol Mesa, Antonio UL; Fujihashi, Hirotomo; Amoros, Dolors et al

in Protein science : a publication of the Protein Society (2006), 15(9), 2120-8

The representation of protein structures as small-world networks facilitates the search for topological determinants, which may relate to functionally important residues. Here, we aimed to investigate the ... [more ▼]

The representation of protein structures as small-world networks facilitates the search for topological determinants, which may relate to functionally important residues. Here, we aimed to investigate the performance of residue centrality, viewed as a family fold characteristic, in identifying functionally important residues in protein families. Our study is based on 46 families, including 29 enzyme and 17 non-enzyme families. A total of 80% of these central positions corresponded to active site residues or residues in direct contact with these sites. For enzyme families, this percentage increased to 91%, while for non-enzyme families the percentage decreased substantially to 48%. A total of 70% of these central positions are located in catalytic sites in the enzyme families, 64% are in hetero-atom binding sites in those families binding hetero-atoms, and only 16% belong to protein-protein interfaces in families with protein-protein interaction data. These differences reflect the active site shape: enzyme active sites locate in surface clefts, hetero-atom binding residues are in deep cavities, while protein-protein interactions involve a more planar configuration. On the other hand, not all surface cavities or clefts are comprised of central residues. Thus, closeness centrality identifies functionally important residues in enzymes. While here we focus on binding sites, we expect to identify key residues for the integration and transmission of the information to the rest of the protein, reflecting the relationship between fold and function. Residue centrality is more conserved than the protein sequence, emphasizing the robustness of protein structures. [less ▲]

Detailed reference viewed: 98 (0 UL)
Peer Reviewed
See detailResidues crucial for maintaining short paths in network communication mediate signaling in proteins.
del Sol Mesa, Antonio UL; Fujihashi, Hirotomo; Amoros, Dolors et al

in Molecular systems biology (2006), 2

Here, we represent protein structures as residue interacting networks, which are assumed to involve a permanent flow of information between amino acids. By removal of nodes from the protein network, we ... [more ▼]

Here, we represent protein structures as residue interacting networks, which are assumed to involve a permanent flow of information between amino acids. By removal of nodes from the protein network, we identify fold centrally conserved residues, which are crucial for sustaining the shortest pathways and thus play key roles in long-range interactions. Analysis of seven protein families (myoglobins, G-protein-coupled receptors, the trypsin class of serine proteases, hemoglobins, oligosaccharide phosphorylases, nuclear receptor ligand-binding domains and retroviral proteases) confirms that experimentally many of these residues are important for allosteric communication. The agreement between the centrally conserved residues, which are key in preserving short path lengths, and residues experimentally suggested to mediate signaling further illustrates that topology plays an important role in network communication. Protein folds have evolved under constraints imposed by function. To maintain function, protein structures need to be robust to mutational events. On the other hand, robustness is accompanied by an extreme sensitivity at some crucial sites. Thus, here we propose that centrally conserved residues, whose removal increases the characteristic path length in protein networks, may relate to the system fragility. [less ▲]

Detailed reference viewed: 85 (1 UL)