References of "Sinkkonen, Lasse 50003102"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailNeurodegeneration by Activation of the Microglial Complement–Phagosome Pathway
Bodea, Liviu-Gabriel; Wang, Yiner; Linnartz-Gerlach, Bettina et al

in Journal of Neuroscience (2014), 34(25), 8546-8556

Systemic inflammatory reactions have been postulated to exacerbate neurodegenerative diseases via microglial activation. We now demonstrate in vivo that repeated systemic challenge of mice over four ... [more ▼]

Systemic inflammatory reactions have been postulated to exacerbate neurodegenerative diseases via microglial activation. We now demonstrate in vivo that repeated systemic challenge of mice over four consecutive days with bacterial LPS maintained an elevated microglial inflammatory phenotype and induced loss of dopaminergic neurons in the substantia nigra. The same total cumulative LPS dose given within a single application did not induce neurodegeneration. Whole-genome transcriptome analysis of the brain demonstrated that repeated systemic LPS application induced an activation pattern involving the classical complement system and its associated phagosome pathway. Loss of dopaminergic neurons induced by repeated systemic LPS application was rescued in complement C3-deficient mice, confirming the involvement of the complement system in neurodegeneration. Our data demonstrate that a phagosomal inflammatory response of microglia is leading to complement-mediated loss of dopaminergic neurons. [less ▲]

Detailed reference viewed: 199 (11 UL)
Full Text
Peer Reviewed
See detailCombinatorial regulation of lipoprotein lipase by microRNAs during mouse adipogenesis
Liivrand, Maria UL; Heinäniemi, Merja UL; John, Elisabeth UL et al

in RNA Biology (2014), 11(1), 76-91

MicroRNAs (miRNAs) regulate gene expression directly through base pairing to their targets or indirectly through participating in multi-scale regulatory networks. Often miRNAs take part in feed-forward ... [more ▼]

MicroRNAs (miRNAs) regulate gene expression directly through base pairing to their targets or indirectly through participating in multi-scale regulatory networks. Often miRNAs take part in feed-forward motifs where a miRNA and a transcription factor act on shared targets to achieve accurate regulation of processes such as cell differentiation. Here we show that the expression levels of miR-27a and miR-29a inversely correlate with the mRNA levels of lipoprotein lipase (Lpl), their predicted combinatorial target, and its key transcriptional regulator peroxisome proliferator activated receptor gamma (Pparg) during 3T3-L1 adipocyte differentiation. More importantly, we show that Lpl, a key lipogenic enzyme, can be negatively regulated by the two miRNA families in a combinatorial fashion on the mRNA and functional level in maturing adipocytes. This regulation is mediated through the Lpl 3′UTR as confirmed by reporter gene assays. In addition, a small mathematical model captures the dynamics of this feed-forward motif and predicts the changes in Lpl mRNA levels upon network perturbations. The obtained results might offer an explanation to the dysregulation of LPL in diabetic conditions and could be extended to quantitative modeling of regulation of other metabolic genes under similar regulatory network motifs. [less ▲]

Detailed reference viewed: 295 (34 UL)
Full Text
Peer Reviewed
See detailIntegrated analysis of transcript-level regulation of metabolism reveals disease-relevant nodes of the human metabolic network
Galhardo, Mafalda Sofia UL; Sinkkonen, Lasse UL; Berninger, Philippe et al

in Nucleic Acids Research (2013)

Metabolic diseases and comorbidities represent an ever-growing epidemic where multiple cell types impact tissue homeostasis. Here, the link between the metabolic and gene regulatory networks was studied ... [more ▼]

Metabolic diseases and comorbidities represent an ever-growing epidemic where multiple cell types impact tissue homeostasis. Here, the link between the metabolic and gene regulatory networks was studied through experimental and computational analysis. Integrating gene regulation data with a human metabolic network prompted the establishment of an open-sourced web portal, IDARE (Integrated Data Nodes of Regulation), for visualizing various gene-related data in context of metabolic pathways. Motivated by increasing availability of deep sequencing studies, we obtained ChIP-seq data from widely studied human umbilical vein endothelial cells. Interestingly, we found that association of metabolic genes with multiple transcription factors (TFs) enriched disease-associated genes. To demonstrate further extensions enabled by examining these networks together, constraintbased modeling was applied to data from human preadipocyte differentiation. In parallel, data on gene expression, genome-wide ChIP-seq profiles for peroxisome proliferator-activated receptor (PPAR) c, CCAAT/enhancer binding protein (CEBP) a, liver X receptor (LXR) and H3K4me3 and microRNA target identification for miR-27a, miR-29a and miR-222 were collected. Disease-relevant key nodes, including mitochondrial glycerol-phosphateacyltransferase (GPAM), were exposed from metabolic pathways predicted to change activity by focusing on association with multiple regulators. In both cell types, our analysis reveals the convergence of microRNAs and TFs within the branched chain amino acid (BCAA) metabolic pathway, possibly providing an explanation for its downregulation in obese and diabetic conditions. [less ▲]

Detailed reference viewed: 240 (27 UL)
Full Text
Peer Reviewed
See detailGene-pair expression signatures reveal lineage control
Heinäniemi, Merja UL; Nykter, Matti; Kramer, Roger et al

in Nature Methods (2013)

The distinct cell types of multicellular organisms arise due to constraints imposed by gene regulatory networks on the collective change of gene expression across the genome, creating self-stabilizing ... [more ▼]

The distinct cell types of multicellular organisms arise due to constraints imposed by gene regulatory networks on the collective change of gene expression across the genome, creating self-stabilizing expression states, or attractors. We compiled a resource of curated human expression data comprising 166 cell types and 2,602 transcription regulating genes and developed a data driven method built around the concept of expression reversal defined at the level of gene pairs, such as those participating in toggle switch circuits. This approach allows us to organize the cell types into their ontogenetic lineage-relationships and to reflect regulatory relationships among genes that explain their ability to function as determinants of cell fate. We show that this method identifies genes belonging to regulatory circuits that control neuronal fate, pluripotency and blood cell differentiation, thus offering a novel large-scale perspective on lineage specification. [less ▲]

Detailed reference viewed: 226 (28 UL)
Full Text
Peer Reviewed
See detailDataset integration identifies transcriptional regulation of microRNA genes by PPARgamma in differentiating mouse 3T3-L1 adipocytes
John, Elisabeth UL; Wienecke-Baldacchino, Anke UL; Liivrand, Maria UL et al

in Nucleic Acids Research (2012), 40(10), 4446-4460

Peroxisome proliferator-activated receptor gamma (PPARgamma) is a key transcription factor in mammalian adipogenesis. Genome-wide approaches have identified thousands of PPARgamma binding sites in mouse ... [more ▼]

Peroxisome proliferator-activated receptor gamma (PPARgamma) is a key transcription factor in mammalian adipogenesis. Genome-wide approaches have identified thousands of PPARgamma binding sites in mouse adipocytes and PPARgamma upregulates hundreds of protein-coding genes during adipogenesis. However, no microRNA (miRNA) genes have been identified as primary PPARgamma-targets. By integration of four separate datasets of genome-wide PPARgamma binding sites in 3T3-L1 adipocytes we identified 98 miRNA clusters with PPARgamma binding within 50 kb from miRNA transcription start sites. Nineteen mature miRNAs were upregulated >/=2-fold during adipogenesis and for six of these miRNA loci the PPARgamma binding sites were confirmed by at least three datasets. The upregulation of five miRNA genes miR-103-1 (host gene Pank3), miR-148b (Copz1), miR-182/96/183, miR-205 and miR-378 (Ppargc1b) followed that of Pparg. The PPARgamma-dependence of four of these miRNA loci was demonstrated by PPARgamma knock-down and the loci of miR-103-1 (Pank3), miR-205 and miR-378 (Ppargc1b) were also responsive to the PPARgamma ligand rosiglitazone. Finally, chromatin immunoprecipitation analysis validated in silico predicted PPARgamma binding sites at all three loci and H3K27 acetylation was analyzed to confirm the activity of these enhancers. In conclusion, we identified 22 putative PPARgamma target miRNA genes, showed the PPARgamma dependence of four of these genes and demonstrated three as direct PPARgamma target genes in mouse adipogenesis. [less ▲]

Detailed reference viewed: 131 (16 UL)
Full Text
Peer Reviewed
See detailTime-Resolved Expression Profiling of the Nuclear Receptor Superfamily in Human Adipogenesis
Lahnalampi, Mari; Heinäniemi, Merja UL; Sinkkonen, Lasse UL et al

in PLoS ONE (2010), 5(9),

Background: The differentiation of fibroblast-like pre-adipocytes to lipid-loaded adipocytes is regulated by a network of transcription factors, the most prominent one being the nuclear receptor ... [more ▼]

Background: The differentiation of fibroblast-like pre-adipocytes to lipid-loaded adipocytes is regulated by a network of transcription factors, the most prominent one being the nuclear receptor peroxisome proliferator-activated receptor (PPAR) gamma. However, many of the other 47 members of the nuclear receptor superfamily have an impact on adipogenesis, which in human cells has not been investigated in detail. Methodology/Principal Findings: We analyzed by quantitative PCR all human nuclear receptors at multiple time points during differentiation of SGBS pre-adipocytes. The earliest effect was the down-regulation of the genes RARG, PPARD, REVERBA, REV-ERBB, VDR and GR followed by the up-regulation of PPARG, LXRA and AR. These observations are supported with data from 3T3-L1 mouse pre-adipocytes and primary human adipocytes. Investigation of the effects of the individual differentiation mix components in short-term treatments and of their omission from the full mix showed that the expression levels of the early-regulated nuclear receptor genes were most affected by the glucocorticoid receptor (GR) ligand cortisol and the phosophodiesterase inhibitor IBMX. Interestingly, the effects of both compounds converged to repress the genes PPARD, REV-ERBA, REV-ERBB, VDR and GR, whereas cortisol and IBMX showed antagonistic interaction for PPARG, LXRA and AR causing a time lag in their up-regulation. We hypothesize that the well-known auto-repression of GR fine-tunes the detected early responses. Consistently, chromatin immunoprecipitation experiments showed that GR association increased on the transcription start sites of the genes RARG, REV-ERBB, VDR and GR. Conclusions/Significance: Adipocyte differentiation is a process, in which many members of the nuclear receptor superfamily change their mRNA expression. The actions of cortisol and IBMX converged to repress several nuclear receptors early in differentiation, while up-regulation of other nuclear receptor genes showed a time lag due to antagonisms of the signals. Our results place GR and its ligand cortisol as central regulatory factors controlling early regulatory events in human adipogenesis that precedes the regulation of the later events by PPARG. [less ▲]

Detailed reference viewed: 135 (1 UL)
Full Text
Peer Reviewed
See detailDicer is associated with ribosomal DNA chromatin in mammalian cells
Sinkkonen, Lasse UL; Hugenschmidt, Tabea; Filipowicz, Witold et al

in PLoS ONE (2010), 5(8), 1-2

BACKGROUND: RNA silencing is a common term for pathways utilizing small RNAs as sequence-specific guides to repress gene expression. Components of the RNA silencing machinery are involved in different ... [more ▼]

BACKGROUND: RNA silencing is a common term for pathways utilizing small RNAs as sequence-specific guides to repress gene expression. Components of the RNA silencing machinery are involved in different aspects of chromatin function in numerous organisms. However, association of RNA silencing with chromatin in mammalian cells remains unclear. METHODOLOGY/PRINCIPAL FINDINGS: Immunostaining of mitotic chromosomes with antibodies visualizing either endogenous or ectopically expressed Dicer in mammalian cells revealed association of the protein with ribosomal DNA (rDNA) repeats. Chromatin immunoprecipitations and bisulfite sequencing experiments indicated that Dicer is associated with transcribed regions of both active and silenced genes in rDNA arrays of interphase chromosomes. Metabolic labeling of the mouse embryonic stem (ES) cells lacking Dicer did not reveal apparent defect in rRNA biogenesis though pre-rRNA synthesis in these cells was decreased, likely as a consequence of their slower growth caused by the loss of miRNAs. We analyzed in detail chromatin structure of rDNA but did not find any epigenetic changes at rDNA loci in Dicer(-/-) ES cells. Instead, we found that rDNA methylation is rather low in primary tissues, contrasting with rDNA methylation patterns in transformed cell lines. CONCLUSION/SIGNIFICANCE: We found that Dicer, a key component of RNA silencing pathways, can be detected in association with rDNA chromatin in mammalian cells. The role of this particular localization of Dicer is not readily apparent since the enzyme is associated with rDNA genes regardless of their transcriptional activity. However, localization of Dicer to the transcribed region suggests that transcription may contribute to the Dicer deposition at rDNA chromatin. We hypothesize that Dicer functions in maintaining integrity of rDNA arrays. [less ▲]

Detailed reference viewed: 104 (3 UL)
Full Text
Peer Reviewed
See detailMicroRNAs control de novo DNA methylation through regulation of transcriptional repressors in mouse embryonic stem cells
Sinkkonen, Lasse UL; Hugenschmidt, Tabea; Berninger, Philipp et al

in Nature Structural and Molecular Biology (2008), 15(3), 259-67

Loss of microRNA (miRNA) pathway components negatively affects differentiation of embryonic stem (ES) cells, but the underlying molecular mechanisms remain poorly defined. Here we characterize changes in ... [more ▼]

Loss of microRNA (miRNA) pathway components negatively affects differentiation of embryonic stem (ES) cells, but the underlying molecular mechanisms remain poorly defined. Here we characterize changes in mouse ES cells lacking Dicer (Dicer1). Transcriptome analysis of Dicer-/- cells indicates that the ES-specific miR-290 cluster has an important regulatory function in undifferentiated ES cells. Consistently, many of the defects in Dicer-deficient cells can be reversed by transfection with miR-290 family miRNAs. We demonstrate that Oct4 (also known as Pou5f1) silencing in differentiating Dicer-/- ES cells is accompanied by accumulation of repressive histone marks but not by DNA methylation, which prevents the stable repression of Oct4. The methylation defect correlates with downregulation of de novo DNA methyltransferases (Dnmts). The downregulation is mediated by Rbl2 and possibly other transcriptional repressors, potential direct targets of miR-290 cluster miRNAs. The defective DNA methylation can be rescued by ectopic expression of de novo Dnmts or by transfection of the miR-290 cluster miRNAs, indicating that de novo DNA methylation in ES cells is controlled by miRNAs. [less ▲]

Detailed reference viewed: 142 (10 UL)
Peer Reviewed
See detailSpatio-temporal activation of chromatin on the human CYP24 gene promoter in the presence of 1alpha,25-Dihydroxyvitamin D3
Väisänen, Sami; Dunlop, Thomas W.; Sinkkonen, Lasse UL et al

in Journal of Molecular Biology (2005), 350(1), 65-77

The vitamin D3 24-hydroxylase gene (CYP24) is one of the most strongly induced genes known. Despite this, its induction by the hormone 1alpha,25-dihydroxyvitamin D3 (1alpha,25OH2D3) has been characterized ... [more ▼]

The vitamin D3 24-hydroxylase gene (CYP24) is one of the most strongly induced genes known. Despite this, its induction by the hormone 1alpha,25-dihydroxyvitamin D3 (1alpha,25OH2D3) has been characterized only partially. Therefore, we monitored the spatio-temporal, 1alpha,25OH2D3-dependent chromatin acetylation status of the human CYP24 promoter by performing chromatin immunoprecipitation (ChIP) assays with antibodies against acetylated histone 4. This was achieved by performing PCR on 25 contiguous genomic regions spanning the first 7.7 kb of the promoter. ChIP assays using antibodies against the 1alpha,25OH2D3 receptor (VDR) revealed that, in addition to the proximal promoter, three novel regions further upstream associated with VDR. Combined in silico/in vitro screening identified in three of the four promoter regions sequences resembling known VDREs and reporter gene assays confirmed the inducibility of these regions by 1alpha,25OH2D3)=. In contrast, the fourth VDR-associated promoter region did not contain any recognizable classical VDRE that could account for the presence of the protein on this region. However, re-ChIP assays monitored on all four promoter regions simultaneous association of VDR with retinoid X receptor, coactivator, mediator and RNA polymerase II proteins. These proteins showed a promoter region-specific association pattern demonstrating the complex choreography of the CYP24 gene promoter activation over 300 minutes. Thus, this study reveals new information concerning the regulation of the CYP24 gene by 1alpha,25OH2D3, and is a demonstration of the simultaneous participation of multiple, structurally diverse response elements in promoter activation in a living cell. [less ▲]

Detailed reference viewed: 51 (8 UL)
Full Text
Peer Reviewed
See detailRegulation of the human cyclin C gene via multiple vitamin D3-responsive regions in its promoter
Sinkkonen, Lasse UL; Malinen, Marjo; Saavalainen, Katri et al

in Nucleic Acids Research (2005), 33(8), 2440-51

The candidate human tumor suppressor gene cyclin C is a primary target of the anti-proliferative hormone 1alpha,25-dihydroxyvitamin D3 [1alpha,25(OH)2D3], but binding sites for the 1alpha,25(OH)2D3 ... [more ▼]

The candidate human tumor suppressor gene cyclin C is a primary target of the anti-proliferative hormone 1alpha,25-dihydroxyvitamin D3 [1alpha,25(OH)2D3], but binding sites for the 1alpha,25(OH)2D3 receptor (VDR), so-called 1alpha,25(OH)2D3 response elements (VDREs), have not yet been identified in the promoter of this gene. We screened various cancer cell lines by quantitative PCR and found that the 1alpha,25(OH)2D3 inducibility of cyclin C mRNA expression, in relationship with the 24-hydroxylase (CYP24) gene, was best in MCF-7 human breast cancer cells. To characterize the molecular mechanisms, we analyzed 8.4 kb of the cyclin C promoter by using chromatin immunoprecipitation assays (ChIP) with antibodies against acetylated histone 4, VDR and its partner receptor, retinoid X receptor (RXR). The histone 4 acetylation status of all 23 investigated regions of the cyclin C promoter did not change significantly in response to 1alpha,25(OH)2D3, but four independent promoter regions showed a consistent, 1alpha,25(OH)2D3-dependent association with VDR and RXR over a time period of 240 min. Combined in silico/in vitro screening identified in each of these promoter regions a VDRE and reporter gene assays confirmed their functionality. Moreover, re-ChIP assays monitored simultaneous association of VDR with RXR, coactivator, mediator and RNA polymerase II proteins on these regions. Since cyclin C protein is associated with those mediator complexes that display transcriptional repressive properties, this study contributes to the understanding of the downregulation of a number of secondary 1alpha,25(OH)2D3-responding genes. [less ▲]

Detailed reference viewed: 225 (9 UL)