References of "Siebentritt, Susanne 50003089"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailPassivation of the CuInSe2 surface via cadmium pre-electrolyte treatment
Kameni Boumenou, Christian UL; Babbe, Finn; Elizabeth, Amala et al

in Physical Review Materials (2020)

Detailed reference viewed: 76 (2 UL)
Full Text
Peer Reviewed
See detailPhonon coupling and shallow defects in CuInS2
Lomuscio, Alberto UL; Sood, Mohit UL; Melchiorre, Michele UL et al

in Physical Review. B (2020), 101(8), 085119-

Detailed reference viewed: 105 (6 UL)
Full Text
Peer Reviewed
See detailHeavy Alkali Treatment of Cu(In,Ga)Se2 Solar Cells: Surface versus Bulk effects
Siebentritt, Susanne UL; Avancini, Enrico; Bär, Marcus et al

in Advanced Energy Materials (2020)

Detailed reference viewed: 28 (2 UL)
Full Text
Peer Reviewed
See detailPhotoluminescence-Based Method for Imaging Buffer Layer Thickness in CIGS Solar Cells
Rey, Germain UL; Paduthol, Appu; Sun, Kaiwen et al

in IEEE Journal of Photovoltaics (2020)

Detailed reference viewed: 55 (6 UL)
Full Text
See detailSurface characterization of epitaxial Cu-rich CuInSe2 absorbers
Lanzoni, Evandro; Spindler, Conrad UL; Ramirez Sanchez, Omar UL et al

in IEEE (2020)

Detailed reference viewed: 51 (6 UL)
Full Text
Peer Reviewed
See detailElectronic defects in Cu(In,Ga)Se2: Towards a comprehensive model
Spindler, Conrad UL; Babbe, Finn UL; Wolter, Max UL et al

in Physical Review Materials (2019), 3

Detailed reference viewed: 138 (13 UL)
Full Text
Peer Reviewed
See detailQuasi-Fermi-Level Splitting of Cu-Poor and Cu-Rich CuInS2 Absorber Layers
Lomuscio, Alberto UL; Rödel, Tobias UL; Schwarz, Torsten et al

in Physical Review Applied (2019), 11

Detailed reference viewed: 424 (10 UL)
Full Text
Peer Reviewed
See detailChallenge in Cu-rich CuInSe2 thin film solar cells: Defect caused by etching
Elanzeery, Hossam UL; Melchiorre, Michele UL; Sood, Mohit UL et al

in Physical Review Materials (2019), 3

Detailed reference viewed: 124 (12 UL)
Full Text
Peer Reviewed
See detailVariable chemical decoration of extended defects in Cu-poor Cu2ZnSnSe4 thin films
Schwarz, Torsten; Redinger, Alex UL; Siebentritt, Susanne UL et al

in Physical Review Materials (2019), 3

Detailed reference viewed: 132 (6 UL)
Full Text
Peer Reviewed
See detailCan we see defects in capacitance measurements of thin‐film solar cells ?
Werner, Florian UL; Babbe, Finn UL; Elanzeery, Hossam UL et al

in Progress in Photovoltaics (2019), 27

Detailed reference viewed: 124 (1 UL)
Full Text
Peer Reviewed
See detailTime-resolved photoluminescence on double graded Cu(In,Ga)Se2 – Impact of front surface recombination and its temperature dependence
Weiss, Thomas UL; Carron, Romain; Wolter, Max UL et al

in Science and Technology of Advanced Materials (2019), 20

Detailed reference viewed: 93 (2 UL)
Full Text
Peer Reviewed
See detailThe hunt for the third acceptor in CuInSe2 and Cu(In,Ga)Se2 absorber layers
Babbe, Finn UL; Elanzeery, Hossam UL; Wolter, Max UL et al

in Journal of Physics: Condensed Matter (2019), 31

Detailed reference viewed: 81 (3 UL)
Full Text
Peer Reviewed
See detailInfluence of stoichiometry and temperature on quasi Fermi level splitting of sulfide CIS absorber layers
Lomuscio, Alberto UL; Melchiorre, Michele UL; Siebentritt, Susanne UL

in 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion, WCPEC 2018 - A Joint Conference of 45th IEEE PVSC, 28th PVSEC and 34th EU PVSEC (2018, November 29)

CuInS-based solar cells suffer from a low open circuit voltage. Absorbers grown under both Cu-excess and Cudeficiency have been used to fabricate record efficiency photovoltaic cells. In this work, we ... [more ▼]

CuInS-based solar cells suffer from a low open circuit voltage. Absorbers grown under both Cu-excess and Cudeficiency have been used to fabricate record efficiency photovoltaic cells. In this work, we present the influence of stoichiometry on the quality of absorbers by means of calibrated room temperature photoluminescence and quasi Fermi level splitting evaluation (qFLs). Deep defects-related photoluminescence decreases using higher Cu/In ratio, leading to a corresponding improvement in qFLs, with values above 900 meV for high copper rich absorbers. © 2018 IEEE. [less ▲]

Detailed reference viewed: 105 (2 UL)
Full Text
Peer Reviewed
See detailHigh‐performance low bandgap thin film solar cells for tandem applications
Elanzeery, Hossam UL; Babbe, Finn UL; Melchiorre, Michele UL et al

in Progress in Photovoltaics (2018)

Thin film tandem solar cells provide a promising approach to achieve high efficiencies. These tandem cells require at least a bottom low bandgap and an upper high bandgap solar cell. In this contribution ... [more ▼]

Thin film tandem solar cells provide a promising approach to achieve high efficiencies. These tandem cells require at least a bottom low bandgap and an upper high bandgap solar cell. In this contribution, 2 high‐performance Cu(In,Ga)Se2 cells with bandgaps as low as 1.04 and 1.07 eV are presented. These cells have shown certified efficiencies of 15.7% and 16.6% respectively. Measuring these cells under a 780‐nm longpass filter, corresponding to the bandgap of a typical top cell in tandem applications (1.57 eV), they achieved efficiencies of 7.9% and 8.3%. Admittance measurements showed no recombination active deep defects. One additional high‐performance CuInSe2 thin film solar cell with bandgap of 0.95 eV and efficiency of 14.1% is presented. All 3 cells have the potential to be integrated as bottom low bandgap cells in thin film tandem applications achieving efficiencies around 24% stacked with an efficient high bandgap top cell. [less ▲]

Detailed reference viewed: 193 (5 UL)
Full Text
Peer Reviewed
See detailAbsorption Coefficient of a Semiconductor Thin Film from Photoluminescence
Rey, Germain UL; Spindler, Conrad UL; Rachad, Wafae UL et al

in Physical Review Applied (2018), 9

Detailed reference viewed: 173 (13 UL)
Full Text
Peer Reviewed
See detailInfluence of Sodium and Rubidium Postdeposition Treatment on the Quasi-Fermi Level Splitting of Cu(In,Ga)Se2 Thin Films
Wolter, Max UL; Bissig, Benjamin; Avancini, Enrico et al

in IEEE Journal of Photovoltaics (2018)

Detailed reference viewed: 93 (3 UL)
Full Text
Peer Reviewed
See detailInterdiffusion and Doping Gradients at the Buffer/Absorber Interface in Thin-Film Solar Cells
Werner, Florian UL; Babbe, Finn UL; Burkhart, Jan UL et al

in ACS Applied Materials and Interfaces (2018), 10

Detailed reference viewed: 110 (9 UL)