References of "Schiltz, Christine 50003015"
     in
Bookmark and Share    
Full Text
See detailHow does Language influence Number transcoding?
Poncin, Alexandre UL; Van Rinsveld, Amandine; Schiltz, Christine UL

Poster (2015, September 29)

The German number word system inverts units and tens compared to the Arabic notation. This is not the case in French, which is more transparent with respect to the Arabic number code. The linguistic ... [more ▼]

The German number word system inverts units and tens compared to the Arabic notation. This is not the case in French, which is more transparent with respect to the Arabic number code. The linguistic structure of number words can facilitate or impede numerical development and performances in number transcoding tasks. We used an original transcoding paradigm with 4th grade French-speaking children, 4th grade German-speaking children, as well as French-speaking and German-speaking young adults who listened to two-digit numbers and had to identify the heard number among four visually presented Arabic numbers. The novelty of our paradigm consisted in manipulating the order of appearance of the units and tens of the Arabic numbers, leading to three conditions: units-first, tens-first and simultaneous appearance. Results revealed that German-speaking children were globally slower than their French-speaking peers. In contrast, language did not affect overall transcoding speed in young adults. Moreover children from both language groups were faster in transcoding when the order of digit appearance was congruent with the number word system (i.e. units-first in German and tens-first in French) compared to the incongruent and the simultaneous presentation order. This pattern indicates that children tended to process number sequentially during the transcoding task. This pattern differed from the behavior observed in adult, since both German- and French-speaking adults solved the transcoding task faster when tens were presented before units (i.e. tens-first) than the reverse. [less ▲]

Detailed reference viewed: 63 (3 UL)
Peer Reviewed
See detailDoes body motion influence arithmetic problem solving
Sosson, Charlotte UL; Guillaume, Mathieu UL; Schuller, Anne-Marie UL et al

Poster (2015, September)

Recent evidence indicates that body movements can influence number processing (Hartmann, et al., 2012) and arithmetic problem solving (Lugli, et al., 2013). Thus it was for instance observed that moving ... [more ▼]

Recent evidence indicates that body movements can influence number processing (Hartmann, et al., 2012) and arithmetic problem solving (Lugli, et al., 2013). Thus it was for instance observed that moving the arm rightward and upward led to better performance during additions and leftward and downward during subtractions (Wiemers, et al., 2014). These results could be explained by the fact that left/right body motion can be (in)compatible with the attentional motion towards the left/right on the mental number line known to underlie subtractions/additions (i.e. operational momentum effect) (McCrink, et al., 2007; Lindemann, et al., 2011). The compatible situations (i.e. leftwards motion - subtraction and rightwards motion - addition) thus are expected to facilitate arithmetic performance compared to incompatible ones. The present study was designed to test this hypothesis during arithmetic problem solving using: (1) physical passive rotary whole-body motion and (2) virtual environment mimicking a similar passive body motion. Findings of the present study confirm the classical effects known to play a role in arithmetic problem solving. They also revealed that passive rotary whole-body motion - implemented physically or by virtual reality - had no particular effect on the solving of calculations. This is in contrast with previous studies that showed an influence of active head/arm or passive translational movements on numerical task performance. [less ▲]

Detailed reference viewed: 54 (7 UL)
Peer Reviewed
See detailThe link between number-space associations and visuospatial abilities depends on visualization profile
Georges, Carrie UL; Hoffmann, Danielle UL; Schiltz, Christine UL

Poster (2015, September)

Background: Evidence for number-space associations comes from the spatial-numerical association of response-codes (SNARC) effect, consisting in faster RTs to small/large digits with the left/right hand ... [more ▼]

Background: Evidence for number-space associations comes from the spatial-numerical association of response-codes (SNARC) effect, consisting in faster RTs to small/large digits with the left/right hand respectively. However, the cognitive origin of the effect remains elusive. Previous studies suggested that it might depend on visuospatial processes, since individuals with better performances in 2D (but not 3D) mental rotation tasks displayed weaker number-space associations (Viarouge et al., 2014). Aims: Given the high inter-individual variability of number-space associations, we determined whether the SNARC effect always relies on visuospatial processes or whether its cognitive origin varies with visualization preferences. Method: We distinguished between object-visualizers (n=42, 23 female, age=22.93) and spatial-visualizers (n=42, 15 female, age=23.9) using the Object-Spatial Imagery Questionnaire (Blajenkova et al., 2006). All participants performed the parity judgment task, a 2D visuospatial test and a 3D mental rotation task. Results: In object-visualizers, weaker SNARC slopes were associated with better performances in the 2D (r=0.46, p=0.004), but not 3D (r=-0.04, p=0.79) task, thereby replicating previous observations. Conversely, in spatial-visualizers, the performances in both visuospatial tasks were unrelated to the SNARC effect (2D: r=0.02, p=0.89; 3D: r=0.2, p=0.22). Conclusions: These findings suggest that in object-visualizers, number-space associations and 2D performances underlie common visuospatial processes. Conversely, in spatial-visualizers, number-space associations seem to result from cognitive mechanisms other than those recruited during the aforementioned visuospatial tasks (e.g., verbal-spatial coding mechanisms). All in all, we were able to further unravel the mechanisms underlying number-space associations and could highlight visualization preferences as an additional explanation for the great inter-individual variability of the SNARC effect. [less ▲]

Detailed reference viewed: 69 (9 UL)
Peer Reviewed
See detailFunctional connectivity and structural analyses in the bilingual brain: implications for arithmetic.
Van Rinsveld, Amandine UL; Dricot, Laurence; Guillaume, Mathieu UL et al

Poster (2015, June)

Do bilinguals use the same brain networks than monolinguals when they solve arithmetic problems? We investigated this question by using resting-state functional connectivity and cortical thickness ... [more ▼]

Do bilinguals use the same brain networks than monolinguals when they solve arithmetic problems? We investigated this question by using resting-state functional connectivity and cortical thickness measurements. Recent studies highlighted differences of functional connectivity (e.g. Grady et al., 2015) and of brain structure (e.g. Klein et al., 2014) between bilinguals and monolinguals. However, no study so far has linked these differences to arithmetic problem solving, a cognitive skill that may at least partially rely on language processing. Our study population was composed of carefully selected German-French bilinguals (N = 20) who acquired each language at the same age, leading to high proficiency levels in both languages. These bilinguals all attended university in their second language at the time of the experiment, namely French. Therefore we selected a control group of French-speaking monolinguals (N = 12). Structural and functional images of brain activity were collected using a 3T MRI scanner. Functional scans of resting-state were acquired during a 6-minute session, with eyes closed. A 3D T1-weighted data set encompassing the whole brain was acquired to provide detailed anatomy (1 mm3), which was used both for the co-registration of functional data and for morphometric analyses. Prior to the scanning session, all participants took a behavioral test measuring their arithmetic skill. For the resting-state part of the study, we generated spheres based on ROIs reported in the literature as magnitude manipulation- and language-related areas during arithmetic problem solving (Klein et al. 2013), and addition-related areas reported in a recent meta-analysis (Arsalidou & Tayor, 2011). We used these spheres as seed regions for the analyses. We correlated resting activations between these regions and compared these correlations in bilinguals versus monolinguals. Results showed significantly higher correlations between the three seed regions in monolinguals than in bilinguals (all ts > 2.306; ps < .05), suggesting that regions used to solve arithmetic problems form a different network in bilinguals than in monolinguals. To control for general differences between both populations, we also created two spheres in areas not specifically related to neither arithmetic nor language regions. There were no significant differences between groups in terms of correlations of these regions with resting-state activations. These results suggest that the differences observed in arithmetic problem solving regions could not account for by general differences between groups. In the second part of the study, we aimed at verifying whether the differences in functional connectivity we observed between bilinguals and monolinguals coincide with structural brain differences. We measured and compared cortical thickness in both groups. Then we compared the correlations between cortical thickness and arithmetic skill in both groups (considering differences with corrected p < .001). Cortical thickness of areas commonly associated to language or number processing correlated differently with arithmetic skill as a function of the group: Higher cortical thickness of left pars triangularis, bilateral superior parietal gyri and precuneus positively correlated with arithmetic skill in monolinguals but negatively correlated with arithmetic skill in bilinguals. These results highlight that there are different relations between brain structure and arithmetic skills in bilinguals and monolinguals. In conclusion the current study provides new evidence for differences between bilinguals’ and monolinguals’ brain networks engaged in arithmetic problem solving, even without any arithmetic task during the data acquisition. These findings based on functional connectivity and brain structure analyses also reveal the general involvement of language in arithmetic problem solving in bilingual as well as non-bilingual individuals. [less ▲]

Detailed reference viewed: 93 (8 UL)
Peer Reviewed
See detailInhibitory control influences number-space associations in atypical young adults with ADHD
Georges, Carrie UL; Hoffmann, Danielle UL; Schiltz, Christine UL

Poster (2015, May)

Evidence for number-space associations comes from the spatial-numerical association of response-codes (SNARC) effect, consisting in faster reaction times (RTs) to small/large digits with the left/right ... [more ▼]

Evidence for number-space associations comes from the spatial-numerical association of response-codes (SNARC) effect, consisting in faster reaction times (RTs) to small/large digits with the left/right hand respectively. The SNARC effect is, however, characterized by high inter-individual variability, depending amongst others on inhibition capacities. Hoffmann et al. (2014) showed that individuals more sensitive to the interference of irrelevant information in the classical color-word Stroop task displayed stronger number-space associations. This relation was most pronounced in elderly, but did not reach significance in young healthy adults. To determine whether the negligible correlation in the young resulted from their near ceiling performances on the color-word Stroop task, we recruited young adults featuring atypically weak and variable inhibitory control. Our study population consisted of individuals (n=32; 18 females; age=27.28 years) formally diagnosed with attention-deficit/hyperactivity disorder (ADHD; n=4) and/or displaying symptoms consistent with ADHD according to the Adult ADHD Self-Report Scale (ASRS-v1.1; n=29). Within this population, a significant negative correlation (r=-0.45; p=0.009) could be observed between the parity SNARC effect (mean slope=-14.17; p<0.001) and Stroop interference, as indexed by the color-word Stroop ratio score (i.e. the difference in RTs between the color-word interference condition and the color naming condition divided by the RT in the word reading condition; mean ratio=0.82). The relationship remained significant even after controlling for arithmetic performance and general processing speed, as assessed using the arithmetic battery (Rubinsten & Henik, 2005; Shalev et al., 2001; mean accuracy=84.61%) and a speeded matching-to-sample task respectively (mean RT=671.86ms; r=-0.47; p=0.008). Our findings thus reveal that stronger number-space associations are associated with weaker Stroop inhibitory control in young adults with atypical attentional profiles, thereby further confirming the similarities between SNARC effects and Stroop-like interference effects. [less ▲]

Detailed reference viewed: 72 (6 UL)
Peer Reviewed
See detailNeural correlates of arithmetic problem solving in bilinguals: an fMRI study.
Van Rinsveld, Amandine UL; Dricot, Laurence; Guillaume, Mathieu UL et al

Poster (2015, May)

Detailed reference viewed: 71 (1 UL)
Peer Reviewed
See detailArithmetic in the bilingual brain: an fMRI study
Van Rinsveld, Amandine UL; Dricot, Laurence; Guillaume, Mathieu UL et al

Scientific Conference (2015, March)

Using fMRI we observed that solving addition and multiplication problems induced activation in several fronto-parietal regions in both German-French bilingual and French monolingual adults. However ... [more ▼]

Using fMRI we observed that solving addition and multiplication problems induced activation in several fronto-parietal regions in both German-French bilingual and French monolingual adults. However, during complex addition frontal regions showed systematically higher activation levels in bilinguals than monolinguals, both when bilinguals computed in German (math-acquisition language) and in French. [less ▲]

Detailed reference viewed: 64 (7 UL)
Peer Reviewed
See detailDoes body motion influence arithmetic
Sosson, Charlotte UL; Guillaume, Mathieu UL; Schuller, Anne-Marie UL et al

Poster (2015, March)

« Embodiment theory » proposes that bodily actions impact the quality of mental representations. Two recent studies (Loetscher, et al., 2008; Hartmann, et al., 2011) have shown that leftward movements of ... [more ▼]

« Embodiment theory » proposes that bodily actions impact the quality of mental representations. Two recent studies (Loetscher, et al., 2008; Hartmann, et al., 2011) have shown that leftward movements of the head or the body enhanced small number generation while rightward movements increased the generation of larger numbers. The present study aimed to investigate the influence of passive whole-body movement on arithmetic-problem solving. Our design was elaborated in the context of operational momentum effect (Pinhas, & Fischer, 2008; McCrink, et al., 2007). In the domain of arithmetic this effect refers to the fact that outcomes of additions are systematically estimated to be larger than the outcomes of subtractions and vice versa for subtraction (Knops, et al., 2009; Lindemann, et al., 2011). Interestingly this bias is present for non-carry but not for carry problems. To account for the operational momentum effect it has been proposed that subtractions involve an attentional motion towards the left of the mental number line and additions towards the right inducing the above-mentioned under- and over-estimation. In line with these findings we reasoned that passive body motion might orient attention towards the side of the body movement and consequently enhance the attentional shifts supposed to underlie the operational momentum effects that occur during numerical tasks. In the present paradigm participants were sitting blindfolded on a swivel chair. While they were rotated alternatively 180° towards the left and the right with a pace of 49°/sec., they were asked to orally solve different kinds of calculations presented via headphones. Calculations consisted in additions and subtractions (first operand: from 1 to 98; second operand: from 1 to 13 and results: from 3 to 89) that were composed of carry and non-carry problems and had different levels of difficulty (easy: results from 1 to 9; medium: results from 11 to 19; difficult: from 21 to 89). Contrary to our predictions, results indicate that the direction of passive body motion (i.e. leftwards vs. rightwards) did not influence arithmetic performance. Indeed the ANOVA for repeated measures with the factor Motion (left, right), Problem type (carry, non-carry) and Operation type (addition, subtraction) revealed no main effect of motion (F(1,33)= 0,856, p=0.361). In contrast we observed a main effect of Problem type (F(1,33)=29.065, p<0.001), a main effect of Operation type (F(1,33)= 20,721, p<0.001) and a significant interaction of Problem type x Operation type (F(1,30)=5.605,p=0.024). As would be expected from the results observed with classical stationary experiment settings, participants were more accurate while solving additions than subtractions and made less errors with non-carry problems. Moreover the carry effect was larger for subtractions than additions. Analyses of the reaction times led to the same conclusions. These results indicate that orally solving arithmetic problems is not influenced by the direction (leftwards vs. rightwards) of passive rotary body-motion. This finding contrasts with previous observations that active head movements and/or passive translational movements impacts numerical task performance. Future studies which systematically contrast the effects of the different movement types on numerical tasks should help to clarify this discrepancy. [less ▲]

Detailed reference viewed: 33 (2 UL)
Full Text
Peer Reviewed
See detailThe relation between language and arithmetic in bilinguals: insights from different stages of language acquisition
Van Rinsveld, Amandine UL; Brunner, Martin UL; Landerl, Karin et al

in Frontiers in Psychology (2015), 6

Solving arithmetic problems is a cognitive task that heavily relies on language processing. One might thus wonder whether this language-reliance leads to qualitative differences (e.g., greater ... [more ▼]

Solving arithmetic problems is a cognitive task that heavily relies on language processing. One might thus wonder whether this language-reliance leads to qualitative differences (e.g., greater difficulties, error types, etc.) in arithmetic for bilingual individuals who frequently have to solve arithmetic problems in more than one language. The present study investigated how proficiency in two languages interacts with arithmetic problem solving throughout language acquisition in adolescents and young adults. Additionally, we examined whether the number word structure that is specific to a given language plays a role in number processing over and above bilingual proficiency. We addressed these issues in a German–French educational bilingual setting, where there is a progressive transition from German to French as teaching language. Importantly, German and French number naming structures differ clearly, as two-digit number names follow a unit-ten order in German, but a ten-unit order in French. We implemented a transversal developmental design in which bilingual pupils from grades 7, 8, 10, 11, and young adults were asked to solve simple and complex additions in both languages. The results confirmed that language proficiency is crucial especially for complex addition computation. Simple additions in contrast can be retrieved equally well in both languages after extended language practice. Additional analyses revealed that over and above language proficiency, language-specific number word structures (e.g., unit-ten vs. ten-unit) also induced significant modulations of bilinguals' arithmetic performances. Taken together, these findings support the view of a strong relation between language and arithmetic in bilinguals. [less ▲]

Detailed reference viewed: 203 (24 UL)
Peer Reviewed
See detailInhibitory Control Influences the SNARC Effect in Tasks without Explicit Reference to Numerical Magnitude
Georges, Carrie UL; Hoffmann, Danielle UL; Schiltz, Christine UL

Poster (2015, March)

Evidence for number-space associations comes from the spatial-numerical association of response-codes (SNARC) effect, consisting in faster reaction times to small/large digits with the left/right hand ... [more ▼]

Evidence for number-space associations comes from the spatial-numerical association of response-codes (SNARC) effect, consisting in faster reaction times to small/large digits with the left/right hand respectively. Although the SNARC effect has now been extensively replicated, it is characterized by high inter-individual variability (Wood et al., 2008). For instance, it has been shown to depend on inhibitory control as indexed by the color Stroop effect in the elderly, with individuals having weaker inhibitory control displaying stronger SNARC effects (Hoffmann et al., 2014). Apart from these well-documented inter-individual differences, number-space associations are also influenced by intra-individual factors. Georges et al. (2014) found that in a population of healthy young university students (n=85, 39 females, mean age=23.44 years), the SNARC effect was qualitatively different within single individuals depending on the number-processing task that they performed. While the strength of the SNARC effects were related in a parity and color judgment task (parity slope=-11.58; color slope=-6.79; r=0.36, p=0.001), as well as in the parity and a magnitude comparison task (magnitude slope=-6.98; r=0.36, p=0.001), no relation could be observed between number-space associations in the color and magnitude tasks (r=0.18, p=0.11). These findings indicate that two distinct factors seem to account for the variance related to number-space associations observed during the three tasks. In the present study, we built on these findings while investigating how inhibitory control influences variance in the SNARC effect observed during different numerical tasks. To this aim, we performed a principle component analysis followed by varimax rotation to combine the color and parity SNARC effects (i.e. number-space associations in tasks without explicit reference to numerical magnitude) and the parity and magnitude SNARC effects (i.e. number-space associations in tasks involving semantic number processing) into single factors (color-parity-SNARC and parity-magnitude-SNARC factors respectively). We then investigated how these two extracted SNARC factors were influenced by inter-individual characteristics such as inhibitory control. Inhibitory control was evaluated in a task that involved responding to the color (green or red) of a centrally presented arrow pointing either in the left or right direction by pressing on the left or right hand-side. To get a single inhibitory control measure for each individual, we calculated inverse efficiency scores on compatible and incompatible trials and computed performance differences between those two conditions. The scores of the extracted parity-color-SNARC factor significantly correlated with the inhibitory control measure (μ=109.98ms, SD=85.82ms; r=-0.26, p=0.02), while no relation was observed between inhibitory control and the parity-magnitude SNARC factor scores (r=-0.1, p=0.42). This suggests that individuals with better inhibitory control (i.e. smaller performance differences between compatible and incompatible trials) displayed weaker SNARC effects only in number-processing tasks that required the suppression of an irrelevant numerical (magnitude) code for successful task completion. Number-space associations are characterized by high inter- and intra-individual variability. We determined how the SNARC effect observed in tasks with and without explicit numerical magnitude processing related to inhibitory control. Individuals with better inhibitory control displayed weaker SNARC effects only in tasks requiring the suppression of an irrelevant numerical magnitude. [less ▲]

Detailed reference viewed: 136 (6 UL)
Peer Reviewed
See detailHorizontal tuning of face-specific processing from childhood to elderly adulthood.
Goffaux, Valerie; Poncin, Aude; Schiltz, Christine UL

Poster (2015)

Face recognition in adults recruits specialised mechanisms that are selectively driven by horizontal information. This range indeed conveys the most optimal and stable cues to identity. Whether the ... [more ▼]

Face recognition in adults recruits specialised mechanisms that are selectively driven by horizontal information. This range indeed conveys the most optimal and stable cues to identity. Whether the horizontal tuning of adult face recognition reflects horizontal bias already active at infancy and/or whether it also results from the extensive experience acquired with faces over the lifespan is elusive. Answering these questions is crucial to determine the information constraining the developmental specialisation of core visual functions such as face perception. Participants aged between 6 and 74 years matched unfamiliar faces that were filtered to retain information in narrow ranges centred on horizontal (H), vertical (V), or both orientation ranges (HV). H and V ranges respectively maximize and minimize the recruitment of face-specific mechanisms (Goffaux and Dakin, 2010). Stimuli were presented at upright and inverted planar orientations and the face inversion effect (FIE; i.e., better performance for upright than inverted faces) was taken as a marker of face-specific processing. In H and HV conditions, FIE size increased linearly from childhood to adulthood, manifesting the progressive specialization of face perception. FIE emerged earlier when processing HV than H faces (FIE onset: 6 and 12 years, respectively) indicating that until 12 years horizontal information is necessary but not sufficient to trigger face-specialised processing. Partial correlations further showed that FIE development in HV condition was not fully explained by FIE development in H condition. Besides a progressive maturation of horizontal processing, the specialization of the face processing system thus also depends on the improved integration of horizontal range with other orientations. In contrast, FIE size was small and stable when processing V information. These results show that the face processing system matures over the life span based on the refined encoding of horizontally-oriented (upright) face cues. Meeting abstract presented at VSS 2015. [less ▲]

Detailed reference viewed: 48 (0 UL)
Full Text
Peer Reviewed
See detailInhibition of return and attentional facilitation: Numbers can be counted in, letters tell a different story.
Hoffmann, Danielle UL; Goffaux, Valerie; Schuller, Anne-Marie UL et al

in Acta psychologica (2015), 163

Prior research has provided strong evidence for spatial-numerical associations. Single digits can for instance act as attentional cues, orienting visuo-spatial attention to the left or right hemifield ... [more ▼]

Prior research has provided strong evidence for spatial-numerical associations. Single digits can for instance act as attentional cues, orienting visuo-spatial attention to the left or right hemifield depending on the digit's magnitude, thus facilitating target detection in the cued hemifield (left/right hemifield after small/large digits, respectively). Studies using other types of behaviourally or biologically relevant central cues known to elicit automated symbolic attention orienting effects such as arrows or gaze have shown that the initial facilitation of cued target detection can turn into inhibition at longer stimulus onset asynchronies (SOAs). However, no studies so far investigated whether inhibition of return (IOR) is also observed using digits as uninformative central cues. To address this issue we designed an attentional cueing paradigm using SOAs ranging from 500ms to 1650ms. As expected, the results showed a facilitation effect at the relatively short 650ms SOA, replicating previous findings. At the long 1650ms SOA, however, participants were faster to detect targets in the uncued hemifield compared to the cued hemifield, showing an IOR effect. A control experiment with letters showed no such congruency effects at any SOA. These findings provide the first evidence that digits not only produce facilitation effects at shorter intervals, but also induce inhibitory effects at longer intervals, confirming that Arabic digits engage automated symbolic orienting of attention. [less ▲]

Detailed reference viewed: 103 (8 UL)
Full Text
Peer Reviewed
See detailSelectivity of Face Perception to Horizontal Information over Lifespan (from 6 to 74 Year Old).
Goffaux, Valerie; Poncin, Aude; Schiltz, Christine UL

in PloS one (2015), 10(9), 0138812

Face recognition in young human adults preferentially relies on the processing of horizontally-oriented visual information. We addressed whether the horizontal tuning of face perception is modulated by ... [more ▼]

Face recognition in young human adults preferentially relies on the processing of horizontally-oriented visual information. We addressed whether the horizontal tuning of face perception is modulated by the extensive experience humans acquire with faces over the lifespan, or whether it reflects an invariable processing bias for this visual category. We tested 296 subjects aged from 6 to 74 years in a face matching task. Stimuli were upright and inverted faces filtered to preserve information in the horizontal or vertical orientation, or both (HV) ranges. The reliance on face-specific processing was inferred based on the face inversion effect (FIE). FIE size increased linearly until young adulthood in the horizontal but not the vertical orientation range of face information. These findings indicate that the protracted specialization of the face processing system relies on the extensive experience humans acquire at encoding the horizontal information conveyed by upright faces. [less ▲]

Detailed reference viewed: 52 (2 UL)
Full Text
Peer Reviewed
See detailTask instructions determine the visuospatial and verbal-spatial nature of number-space associations
Georges, Carrie UL; Schiltz, Christine UL; Hoffmann, Danielle UL

in Quarterly Journal of Experimental Psychology [=QJEP] (2015), 68(9),

Detailed reference viewed: 98 (17 UL)
Full Text
Peer Reviewed
See detailHorizontal tuning for faces originates in high-level Fusiform Face Area.
Goffaux, Valerie; Duecker, Felix; Hausfeld, Lars et al

in Neuropsychologia (2015), 81

Recent work indicates that the specialization of face visual perception relies on the privileged processing of horizontal angles of facial information. This suggests that stimulus properties assumed to be ... [more ▼]

Recent work indicates that the specialization of face visual perception relies on the privileged processing of horizontal angles of facial information. This suggests that stimulus properties assumed to be fully resolved in primary visual cortex (V1; e.g., orientation) in fact determine human vision until high-level stages of processing. To address this hypothesis, the present fMRI study explored the orientation sensitivity of V1 and high-level face-specialized ventral regions such as the Occipital Face Area (OFA) and Fusiform Face Area (FFA) to different angles of face information. Participants viewed face images filtered to retain information at horizontal, vertical or oblique angles. Filtered images were viewed upright, inverted and (phase-)scrambled. FFA responded most strongly to the horizontal range of upright face information; its activation pattern reliably separated horizontal from oblique ranges, but only when faces were upright. Moreover, activation patterns induced in the right FFA and the OFA by upright and inverted faces could only be separated based on horizontal information. This indicates that the specialized processing of upright face information in the OFA and FFA essentially relies on the encoding of horizontal facial cues. This pattern was not passively inherited from V1, which was found to respond less strongly to horizontal than other orientations likely due to adaptive whitening. Moreover, we found that orientation decoding accuracy in V1 was impaired for stimuli containing no meaningful shape. By showing that primary coding in V1 is influenced by high-order stimulus structure and that high-level processing is tuned to selective ranges of primary information, the present work suggests that primary and high-level levels of the visual system interact in order to modulate the processing of certain ranges of primary information depending on their relevance with respect to the stimulus and task at hand. [less ▲]

Detailed reference viewed: 60 (1 UL)
Peer Reviewed
See detailDifferent number-processing tasks entail qualitatively different SNARC effects
Georges, Carrie UL; Hoffmann, Danielle UL; Schiltz, Christine UL

Poster (2014, October)

Evidence for number-space associations comes from the spatial-numerical association of response-codes (SNARC) effect, consisting in faster reaction times to small/large digits with the left/right hand ... [more ▼]

Evidence for number-space associations comes from the spatial-numerical association of response-codes (SNARC) effect, consisting in faster reaction times to small/large digits with the left/right hand respectively. Although the SNARC effect has been extensively replicated, it is characterized by high inter-individual variability (e.g. Hoffmann et al., 2014). Moreover, even though number-space associations have been observed when numerical magnitude is both relevant (e.g. magnitude comparison) and irrelevant (e.g. parity and color judgment) for successful task completion, their strengths and underlying cognitive processes seem to vary depending on whether explicit reference to numerical magnitude is drawn or not (Fias et al., 2001; Mitchell et al., 2012). To further evaluate this hypothesis, we examined whether the SNARC effects observed in a single individual during distinct number-processing tasks were systematically linked. We computed correlations between the SNARC effects measured during a parity, magnitude and color judgment task in a population of 85 healthy university students (39 females, mean age=23.44 years). Interestingly, no relation could be observed between the color (slope=-6.79) and magnitude SNARC effects (slope=-6.98; r=0.18, p=0.11), indicating that number-space associations potentially underlie different cognitive operations in tasks with and without explicit numerical magnitude processing. Conversely, the parity SNARC effect (slope=-11.58) correlated with both the color (r=0.36, p=0.001) and magnitude SNARC effects (r=0.36, p=0.001). This suggests that although no explicit numerical magnitude treatment is required in the parity task – explaining its relationship with the color task – the involvement of number semantics is sufficient to position it in line with the magnitude judgment task. [less ▲]

Detailed reference viewed: 176 (18 UL)
Full Text
Peer Reviewed
See detailShifts of spatial attention cued by irrelevant numbers: Electrophysiological evidence from a target discrimination task
Schuller, Anne-Marie UL; Hoffmann, Danielle UL; Goffaux, Valérie et al

in Journal of cognitive pychology (2014)

Fischer et al. demonstrated that a centrally presented number can shift attention to the left/right when its magnitude is small/large. Two electrophysiological studies described these attentional effects ... [more ▼]

Fischer et al. demonstrated that a centrally presented number can shift attention to the left/right when its magnitude is small/large. Two electrophysiological studies described these attentional effects as eventrelated potentials (ERPs) at centro-parietal sites. Since both studies used target detection tasks, it remains currently unknown whether similar results would be obtained with a discrimination task. We used ERPs to test whether digit cues also induce attention shifts when participants perform a feature discrimination task on targets. ERPs were recorded whereas subjects discriminated the colour of lateral targets that were preceded by a central non-predictive digit. Analysis of cue-locked controlateral vs. ipsilateral ERP activity showed the emergence of early preparatory attention-directing components in parietal and frontal regions. Moreover, target-locked P1 components at occipito-parietal sites were significantly modulated by digit magnitude-target side congruency. These results demonstrate that irrelevant digit cues also bias sensory processing when embedded in a feature-discrimination task. [less ▲]

Detailed reference viewed: 179 (19 UL)
See detailQue fait un professeur d’université qui travaille dans le domaine des neurosciences cognitives?
Schiltz, Christine UL

Conference given outside the academic context (2014)

Detailed reference viewed: 24 (2 UL)
See detailWaat as Dyscalculie?
Schiltz, Christine UL

Conference given outside the academic context (2014)

Detailed reference viewed: 60 (2 UL)