![]() ; ; et al in Journal of Lipid Research (2002), 43(11), 1939-1949 Mutations in ABCA1 uniformly decrease plasma HDL-cholesterol (HDL-C) and reduce cholesterol efflux, yet different mutations in ABCA1 result in different phenotypic effects in heterozygotes. For example ... [more ▼] Mutations in ABCA1 uniformly decrease plasma HDL-cholesterol (HDL-C) and reduce cholesterol efflux, yet different mutations in ABCA1 result in different phenotypic effects in heterozygotes. For example, truncation mutations result in significantly lower HDL-C and apoliprotein A-I (apoA-I) levels in heterozygotes compared with nontruncation mutations, suggesting that truncation mutations may negatively affect the wild-type allele. To specifically test this hypothesis, we examined ABCA1 protein expression in response to 9-cis-retinoic acid (9-cis-RA) and 22-R-hydroxycholesterol (22-R-OH-Chol) in a collection of human fibroblasts representing eight different mutations and observed that truncation mutations blunted the response to oxysterol stimulation and dominantly suppressed induction of the remaining full-length allele to 5–10% of wild-type levels. mRNA levels between truncation and nontruncation mutations were comparable, suggesting that ABCA1 expression was suppressed at the protein level. Dominant negative activity of truncated ABCA1 was recapitulated in an in vitro model using transfected Cos-7 cells. Our results suggest that the severe reduction of HDL-C in patients with truncation mutations may be at least partly explained by dominant negative suppression of expression and activity of the remaining full-length ABCA1 allele. [less ▲] Detailed reference viewed: 110 (0 UL)![]() ; ; et al in Circulation (2001), 103(9), 1198-1205 BACKGROUND: Low plasma HDL cholesterol (HDL-C) is associated with an increased risk of coronary artery disease (CAD). We recently identified the ATP-binding cassette transporter 1 (ABCA1) as the major ... [more ▼] BACKGROUND: Low plasma HDL cholesterol (HDL-C) is associated with an increased risk of coronary artery disease (CAD). We recently identified the ATP-binding cassette transporter 1 (ABCA1) as the major gene underlying the HDL deficiency associated with reduced cholesterol efflux. Mutations within the ABCA1 gene are associated with decreased HDL-C, increased triglycerides, and an increased risk of CAD. However, the extent to which common variation within this gene influences plasma lipid levels and CAD in the general population is unknown. METHODS AND RESULTS: We examined the phenotypic effects of single nucleotide polymorphisms in the coding region of ABCA1. The R219K variant has a carrier frequency of 46% in Europeans. Carriers have a reduced severity of CAD, decreased focal (minimum obstruction diameter 1.81+/-0.35 versus 1.73+/-0.35 mm in noncarriers, P:=0.001) and diffuse atherosclerosis (mean segment diameter 2.77+/-0.37 versus 2.70+/-0.37 mm, P:=0.005), and fewer coronary events (50% versus 59%, P:=0.02). Atherosclerosis progresses more slowly in carriers of R219K than in noncarriers. Carriers have decreased triglyceride levels (1.42+/-0.49 versus 1.84+/-0.77 mmol/L, P:=0.001) and a trend toward increased HDL-C (0.91+/-0.22 versus 0.88+/-0.20 mmol/L, P:=0.12). Other single nucleotide polymorphisms in the coding region had milder effects on plasma lipids and atherosclerosis. CONCLUSIONS: These data suggest that common variation in ABCA1 significantly influences plasma lipid levels and the severity of CAD. [less ▲] Detailed reference viewed: 116 (0 UL)![]() ![]() ; ; et al in Journal of Clinical Investigation (2000), 106(10), 1263-1270 Detailed reference viewed: 106 (0 UL) |
||