References of "Riess, Olaf"
     in
Bookmark and Share    
Peer Reviewed
See detailA comprehensive genetic study of the proteasomal subunit S6 ATPase in German Parkinson's disease patients.
Wahl, Claudia; Kautzmann, Sabine; Krebiehl, Guido et al

in Journal of Neural Transmission (2008), 115(8), 1141-8

Dysfunction of proteasomal protein degradation is involved in neurodegeneration in Parkinson's disease (PD). Recently we identified the regulatory proteasomal subunit S6 ATPase as a novel interactor of ... [more ▼]

Dysfunction of proteasomal protein degradation is involved in neurodegeneration in Parkinson's disease (PD). Recently we identified the regulatory proteasomal subunit S6 ATPase as a novel interactor of synphilin-1, which is a substrate of the ubiquitin-ligase Parkin (PARK2) and an interacting protein of alpha-synuclein (PARK1). To further investigate a potential role in the pathogenesis of PD, we performed a detailed mutation analysis of the S6 ATPase gene in a large sample of 486 German sporadic and familial PD patients. Direct sequencing revealed two novel intronic variants. An insertion/deletion variant in intron 5 of the S6 ATPase gene was more frequent in patients compared to controls. Moreover, this variant was significantly more frequent in early-onset compared to late-onset PD patients. The identification of a genetic link between a regulatory proteasomal subunit and PD further underscores the relevance of disturbed protein degradation in PD. [less ▲]

Detailed reference viewed: 113 (1 UL)
Full Text
Peer Reviewed
See detailMitochondrial translation initiation factor 3 gene polymorphism associated with Parkinson's disease.
Abahuni, Nadine; Gispert, Suzana; Bauer, Peter et al

in Neuroscience Letters (2007), 414(2), 126-9

Mitochondrial dysfunction occurs early in late-onset sporadic Parkinson's disease (PD), but the mitochondrial protein network mediating PD pathogenesis is largely unknown. Mutations in the mitochondrial ... [more ▼]

Mitochondrial dysfunction occurs early in late-onset sporadic Parkinson's disease (PD), but the mitochondrial protein network mediating PD pathogenesis is largely unknown. Mutations in the mitochondrial serine-threonine kinase PINK1 have recently been shown to cause the early-onset autosomal recessive PARK6 variant of PD. We have now tested a candidate interactor protein of PINK1, the mitochondrial translation initiation factor 3 (MTIF3) for involvement in PD pathogenesis. In two independent case-control collectives, the c.798C>T polymorphism of the MTIF3 gene showed allelic association with PD, with a maximal significance of p=0.0073. An altered function of variant MTIF3 may affect the availability of mitochondrial encoded proteins, lead to oxidative stress and create vulnerability for PD. [less ▲]

Detailed reference viewed: 168 (3 UL)
Peer Reviewed
See detailCollaborative analysis of alpha-synuclein gene promoter variability and Parkinson disease.
Maraganore, Demetrius M.; de Andrade, Mariza; Elbaz, Alexis et al

in JAMA: Journal of the American Medical Association (2006), 296(6), 661-70

CONTEXT: Identification and replication of susceptibility genes for Parkinson disease at the population level have been hampered by small studies with potential biases. Alpha-synuclein (SNCA) has been one ... [more ▼]

CONTEXT: Identification and replication of susceptibility genes for Parkinson disease at the population level have been hampered by small studies with potential biases. Alpha-synuclein (SNCA) has been one of the most promising susceptibility genes, but large-scale studies have been lacking. OBJECTIVE: To determine whether allele-length variability in the dinucleotide repeat sequence (REP1) of the SNCA gene promoter is associated with Parkinson disease susceptibility, whether SNCA promoter haplotypes are associated with Parkinson disease, and whether REP1 variability modifies age at onset. DESIGN, SETTING, AND PARTICIPANTS: We performed a collaborative analysis of individual-level data on SNCA REP1 and flanking markers in patients with Parkinson disease and controls. Study site recruitment, data collection, and analyses were performed between April 5, 2004, and December 31, 2005. Eighteen participating sites of a global genetics consortium provided clinical data. Genotyping was performed for SNCA REP1, -770, and -116 markers at individual sites; however, each site also provided 20 DNA samples for regenotyping centrally. MAIN OUTCOME MEASURES: Measures included estimations of Hardy-Weinberg equilibrium in controls; a test of heterogeneity; analyses for association of single variants or haplotypes; and survival analyses for age at onset. RESULTS: Of the 18 sites, 11 met stringent criteria for concordance with Hardy-Weinberg equilibrium and low genotyping error rate. These 11 sites provided complete data for 2692 cases and 2652 controls. There was no heterogeneity across studies (P>.60). The SNCA REP1 alleles differed in frequency for cases and controls (P<.001). Genotypes defined by the 263 base-pair allele were associated with Parkinson disease (odds ratio, 1.43; 95% confidence interval, 1.22-1.69; P<.001 for trend). Multilocus haplotypes differed in frequency for cases and controls (global score statistic, P<.001). Two-loci haplotypes were associated with Parkinson disease only when they included REP1 as one of the loci. However, genotypes defined by REP1 alleles did not modify age at onset (P = .55). CONCLUSION: This large-scale collaborative analysis demonstrates that SNCA REP1 allele-length variability is associated with an increased risk of Parkinson disease. [less ▲]

Detailed reference viewed: 110 (1 UL)
Peer Reviewed
See detailLoss of function mutations in the gene encoding Omi/HtrA2 in Parkinson's disease.
Strauss, Karsten M.; Martins, Luisa UL; Plun-Favreau, Helene et al

in Human molecular genetics (2005), 14(15), 2099-111

Recently targeted disruption of Omi/HtrA2 has been found to cause neurodegeneration and a parkinsonian phenotype in mice. Using a candidate gene approach, we performed a mutation screening of the Omi ... [more ▼]

Recently targeted disruption of Omi/HtrA2 has been found to cause neurodegeneration and a parkinsonian phenotype in mice. Using a candidate gene approach, we performed a mutation screening of the Omi/HtrA2 gene in German Parkinson's disease (PD) patients. In four patients, we identified a novel heterozygous G399S mutation, which was absent in healthy controls. Moreover, we identified a novel A141S polymorphism that was associated with PD (P<0.05). Both mutations resulted in defective activation of the protease activity of Omi/HtrA2. Immunohistochemistry and functional analysis in stably transfected cells revealed that S399 mutant Omi/HtrA2 and to a lesser extent, the risk allele of the A141S polymorphism induced mitochondrial dysfunction associated with altered mitochondrial morphology. Cells overexpressing S399 mutant Omi/HtrA2 were more susceptible to stress-induced cell death than wild-type. On the basis of functional genomics, our results provide a novel link between mitochondrial dysfunction and neurodegeneration in PD. [less ▲]

Detailed reference viewed: 154 (3 UL)
Peer Reviewed
See detailFunctional relevance of ceruloplasmin mutations in Parkinson's disease.
Hochstrasser, Helmine; Tomiuk, Jurgen; Walter, Uwe et al

in FASEB Journal (2005), 19(13), 1851-3

Increased iron levels of the substantia nigra and the discovery of ceruloplasmin mutations in patients with Parkinson's disease (PD) imply impaired iron metabolism in this neurodegenerative disorder ... [more ▼]

Increased iron levels of the substantia nigra and the discovery of ceruloplasmin mutations in patients with Parkinson's disease (PD) imply impaired iron metabolism in this neurodegenerative disorder. Ceruloplasmin has ferroxidase activity oxidizing iron(II) to iron(III). In the present study, we analyzed the amount of ceruloplasmin, iron, ferritin, and transferrin and the ceruloplasmin ferroxidase activity in serum of patients with the diagnosis of PD carrying the ceruloplasmin mutations I63T, D544E, and R793H. The impact of these missense mutations on the biosynthesis of holo-ceruloplasmin was investigated in cell culture experiments. Functional relevance was found for the ceruloplasmin mutations I63T and D544E. In vivo, the I63T mutation resulted in half the normal ceruloplasmin concentration and markedly reduced ferroxidase activity in serum from a heteroallelic PD patient. In cell culture, the I63T glycosylphosphatidylinositol (GPI)-linked ceruloplasmin isoform was retained in the endoplasmatic reticulum of human embryonic kidney cells. Furthermore, the D544E polymorphism resulted in significantly reduced serum ceruloplasmin levels and ferroxidase activity in heteroallelic patients and in expression of mainly apo-ceruloplasmin in cell culture. Our studies indicate that altered activity of ceruloplasmin may present a vulnerability factor for iron induced oxidative stress in PD. [less ▲]

Detailed reference viewed: 153 (1 UL)
Peer Reviewed
See detailNovel homozygous p.E64D mutation in DJ1 in early onset Parkinson disease (PARK7).
Hering, Robert; Strauss, Karsten M.; Tao, Xiao et al

in Human mutation (2004), 24(4), 321-9

Mutations in the parkin gene have been identified as a common cause of autosomal recessive inherited Parkinson disease (PD) associated with early disease manifestation. However, based on linkage data ... [more ▼]

Mutations in the parkin gene have been identified as a common cause of autosomal recessive inherited Parkinson disease (PD) associated with early disease manifestation. However, based on linkage data, mutations in other genes contribute to the genetic heterogeneity of early-onset PD (EOPD). Recently, two mutations in the DJ1 gene were described as a second cause of autosomal recessive EOPD (PARK7). Analyzing the PARK7/DJ1 gene in 104 EOPD patients, we identified a third mutation, c.192G>C (p.E64D), associated with EOPD in a patient of Turkish ancestry and characterized the functional significance of this amino acid substitution. In the patient, a substantial reduction of dopamine uptake transporter (DAT) binding was found in the striatum using [(18)F]FP-CIT and PET, indicating a serious loss of presynaptic dopaminergic afferents. His sister, homozygous for E64D, was clinically unaffected but showed reduced dopamine uptake when compared with a clinically unaffected brother, who is heterozygous for E64D. We demonstrate by crystallography that the E64D mutation does not alter the structure of the DJ1 protein, however we observe a tendency towards decreased levels of the mutant protein when overexpressed in HEK293 or COS7 cells. Using immunocytochemistry in contrast to the homogenous nuclear and cytoplasmic staining in HEK293 cells overexpressing wild-type DJ1, about 5% of the cells expressing E64D and up to 80% of the cells expressing the recently described L166P mutation displayed a predominant nuclear localization of the mutant DJ1 protein. [less ▲]

Detailed reference viewed: 167 (3 UL)
Peer Reviewed
See detailIdentification and functional characterization of a novel R621C mutation in the synphilin-1 gene in Parkinson's disease.
Marx, Frank P.; Holzmann, Carsten; Strauss, Karsten M. et al

in Human molecular genetics (2003), 12(11), 1223-31

Synphilin-1 is linked to the pathogenesis of Parkinson's disease (PD) based on its identification as an alpha-synuclein (PARK1) and parkin (PARK2) interacting protein. Moreover, synphilin-1 is a component ... [more ▼]

Synphilin-1 is linked to the pathogenesis of Parkinson's disease (PD) based on its identification as an alpha-synuclein (PARK1) and parkin (PARK2) interacting protein. Moreover, synphilin-1 is a component of Lewy bodies (LB) in brains of sporadic PD patients. Therefore, we performed a detailed mutation analysis of the synphilin-1 gene in 328 German familial and sporadic PD patients. In two apparently sporadic PD patients we deciphered a novel C to T transition in position 1861 of the coding sequence leading to an amino acid substitution from arginine to cysteine in position 621 (R621C). This mutation was absent in a total of 702 chromosomes of healthy German controls. To define a possible role of mutant synphilin-1 in the pathogenesis of PD we performed functional analyses in SH-SY5Y cells. We found synphilin-1 capable of producing cytoplasmic inclusions in transfected cells. Moreover we observed a significantly reduced number of inclusions in cells expressing C621 synphilin-1 compared with cells expressing wild-type (wt) synphilin-1, when subjected to proteasomal inhibition. C621 synphilin-1 transfected cells were more susceptible to staurosporine-induced cell death than cells expressing wt synphilin-1. Our findings argue in favour of a causative role of the R621C mutation in the synphilin-1 gene in PD and suggest that the formation of intracellular inclusions may be beneficial to cells and that a mutation in synphilin-1 that reduces this ability may sensitize neurons to cellular stress. [less ▲]

Detailed reference viewed: 128 (1 UL)
Peer Reviewed
See detailHaploinsufficiency at the alpha-synuclein gene underlies phenotypic severity in familial Parkinson's disease.
Kobayashi, Hirokazu; Krüger, Rejko UL; Markopoulou, Katerina et al

in Brain : a journal of neurology (2003), 126(Pt 1), 32-42

To date, two point mutations, G209A and G88C, have been reported in the coding region of the alpha-synuclein gene in autosomal dominant familial Parkinson's disease. When translated, these lead to the ... [more ▼]

To date, two point mutations, G209A and G88C, have been reported in the coding region of the alpha-synuclein gene in autosomal dominant familial Parkinson's disease. When translated, these lead to the missense mutations Ala53Thr and Ala30Pro, respectively. Reduced mRNA expression of the G209A allele was reported recently in a Greek-American family. Here, we show that alpha-synuclein mRNA is normally expressed in blood cells and report the results of an analysis of alpha-synuclein mRNA and protein expression in lymphoblastoid cell lines established from kindreds with the G209A and G88C mutations. mRNA expression was characterized using a TaqMan real-time quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) assay. We assessed five affected and three unaffected members of a German family with the G88C mutation and two affected members in different, unrelated Greek families with the G209A mutation. The ratio of wild-type to mutant alpha-synuclein allele expression ranged from 2.2 to 9.2 in the affected individuals with a severe clinical phenotype. The ratios of the expression levels of the wild-type to mutant alleles were only slightly decreased in mild cases and were less than 1.0 in two asymptomatic heterozygotes. Sequence analysis of the RT-PCR products showed only the presence of G in position 88 and G in position 209 in severely affected heterozygotes of the German and Greek families, respectively. High performance liquid chromatography/mass spectrometry demonstrated that, relative to wild-type alpha-synuclein, there is a reduction of Ala30Pro alpha-synuclein in lymphoblastoid cell lines originating from severely affected, but not mildly affected G88C/+ heterozygotes. Taken together, these data indicate that there is haploinsufficiency at the alpha-synuclein gene and that the ratio of expression of the wild-type to mutant alleles correlates with the severity of the clinical phenotype. Furthermore, these findings suggest that haploinsufficiency of alpha-synuclein mutations may contribute to disease progression in these forms of familial Parkinson's disease. [less ▲]

Detailed reference viewed: 73 (0 UL)
Peer Reviewed
See detailTherapeutic strategies for Parkinson's disease based on data derived from genetic research.
Riess, Olaf; Berg, Daniela; Krüger, Rejko UL et al

in Journal of neurology (2003), 250 Suppl 1

Following the identification of mutations in alpha-synuclein as the cause of some rare forms of familial Parkinson's disease (PD), genetic research has uncovered numerous gene loci of PD. Meanwhile ... [more ▼]

Following the identification of mutations in alpha-synuclein as the cause of some rare forms of familial Parkinson's disease (PD), genetic research has uncovered numerous gene loci of PD. Meanwhile, several neurodegenerative diseases have been shown to accumulate a-synuclein in neuronal and glial cells summarizing this group of diseases as synucleinopathies. All currently known gene defects causing PD alter the ubiquitin-proteasomal pathway of protein degradation. Identification of these disease mutations allows studying the functional consequences which lead to cellular dysfunction and cell death in cell culture and transgenic animal models, to identify therapeutic targets and to test potential protective strategies in these models. [less ▲]

Detailed reference viewed: 116 (0 UL)
Peer Reviewed
See detailMutation analysis of the neurofilament M gene in Parkinson's disease.
Krüger, Rejko UL; Fischer, Christian; Schulte, Thorsten et al

in Neuroscience Letters (2003), 351(2), 125-9

Neurofilament M, a major component of Lewy bodies, represents an interesting candidate in the pathogenesis of Parkinson's disease (PD). We performed detailed mutation analyses of the NF-M gene in 322 ... [more ▼]

Neurofilament M, a major component of Lewy bodies, represents an interesting candidate in the pathogenesis of Parkinson's disease (PD). We performed detailed mutation analyses of the NF-M gene in 322 familial and sporadic PD patients. Two polymorphisms (Ala475Thr and Gly697Arg) occurred at similar frequencies in PD patients and controls. A Pro725Gln substitution and a deletion of valine in position 829 were identified in two PD patients. These substitutions affect residues of the NF-M protein that are highly conserved among different species. None of our patients carried the Gly336Ser substitution, which has been described in familial PD. Our results argue against a major role of NF-M in PD. However, rare variants of the NF-M gene may act as susceptibility factors for PD and functional analyses of the identified variations are warranted to decipher possible mechanisms in neurodegeneration. [less ▲]

Detailed reference viewed: 129 (1 UL)
Peer Reviewed
See detailSpectrum of phenotypes and genotypes in Parkinson's disease.
Riess, Olaf; Krüger, Rejko UL; Schulz, Jorg B.

in Journal of neurology (2002), 249 Suppl 3

The pathogenesis of Parkinsons disease (PD) is currently unknown. Environmental and genetic factors might contribute to the neurodegenerative process. Genetic mapping approaches in rare familial cases ... [more ▼]

The pathogenesis of Parkinsons disease (PD) is currently unknown. Environmental and genetic factors might contribute to the neurodegenerative process. Genetic mapping approaches in rare familial cases with autosomal recessive and autosomal dominant inheritance of PD suggest wide genetic heterogeneity of the disease. These gene loci in turn allow now a more specific clinical investigation of affected families to study the clinical heterogeneity of PD. The recent identification of mutations in three genes involved in protein degradation and aggregation in familial PD does now facilitate the deciphering of other genes involved in the pathogenesis of the disease. [less ▲]

Detailed reference viewed: 136 (0 UL)
Peer Reviewed
See detailParkinson's disease: one biochemical pathway to fit all genes?
Krüger, Rejko UL; Eberhardt, Olaf; Riess, Olaf et al

in Trends in molecular medicine (2002), 8(5), 236-40

Although originally discounted, hereditary factors have emerged as the focus of research in Parkinson's disease (PD). Genetic studies have identified mutations in alpha-synuclein and ubiquitin C-terminal ... [more ▼]

Although originally discounted, hereditary factors have emerged as the focus of research in Parkinson's disease (PD). Genetic studies have identified mutations in alpha-synuclein and ubiquitin C-terminal hydrolase as rare causes of autosomal dominant PD and mutations in parkin as a cause of autosomal recessive PD. Functional characterization of the identified disease genes implicates the ubiquitin-mediated protein degradation pathway in these hereditary forms of PD and also in the more common sporadic forms of PD. Subsequent identification of further loci in familial PD and diverse genetic factors modulating the risk for sporadic PD point to substantial genetic heterogeneity in the disease. Thus, new candidate genes are expected to encode proteins either involved in ubiquitin-mediated protein degradation or sequestrated in intracytoplasmic protein aggregations. Future identification of disease genes is required to confirm this hypothesis, thereby unifying the clinical and genetic heterogeneity of PD, including the common sporadic form of the disease, by one biochemical pathway. [less ▲]

Detailed reference viewed: 121 (0 UL)
Peer Reviewed
See detail14-3-3 protein is a component of Lewy bodies in Parkinson's disease-mutation analysis and association studies of 14-3-3 eta.
Ubl, Andreas; Berg, Daniela; Holzmann, Carsten et al

in Molecular Brain Research (2002), 108(1-2), 33-9

Mutations in alpha-synuclein have been identified in some rare families with autosomal dominant Parkinson's disease (PD). The synuclein gene family shares physical and functional homology with 14-3-3 ... [more ▼]

Mutations in alpha-synuclein have been identified in some rare families with autosomal dominant Parkinson's disease (PD). The synuclein gene family shares physical and functional homology with 14-3-3 proteins and binds to 14-3-3 proteins and to its ligands. We therefore investigated whether 14-3-3 proteins are also involved in the pathogenesis of PD. Here we demonstrate that 14-3-3 proteins are colocalized with Lewy bodies in PD. We investigated the 14-3-3 eta (YWHAH) gene by mutation analysis and association studies as it maps to human chromosome 22q12.1-q13.1, a region which has been recently implicated in PD and carried out immunohistochemical studies of Lewy bodies with two different 14-3-3 eta antibodies. In 358 sporadic and familial PD patients, disease causing mutations were not identified. Furthermore, association studies with intragenic polymorphisms do not provide evidence for an involvement of 14-3-3 eta in the pathogenesis of PD. In accordance with these findings, there was no staining of substantia nigra Lewy bodies with antibodies specific for the 14-3-3 eta subunit. [less ▲]

Detailed reference viewed: 222 (2 UL)
Peer Reviewed
See detailNeurofilament L gene is not a genetic factor of sporadic and familial Parkinson's disease.
Rahner, Nils; Holzmann, Carsten; Krüger, Rejko UL et al

in Brain research (2002), 951(1), 82-6

Mutations in two genes, alpha-synuclein and parkin, have been identified as some rare causes for familial Parkinson's disease (PD). alpha-Synuclein and parkin protein have subsequently been identified in ... [more ▼]

Mutations in two genes, alpha-synuclein and parkin, have been identified as some rare causes for familial Parkinson's disease (PD). alpha-Synuclein and parkin protein have subsequently been identified in Lewy bodies (LB). To gain further insight into the pathogenesis of PD we investigated the role of neurofilament light (NF-L), another component of LB aggregation. A detailed mutation search of the NF-L gene in 328 sporadic and familial PD patients of German ancestry revealed three silent DNA changes (G163A, C224T, C487T) in three unrelated patients. Analysis of the promoter region of the NF-L gene identified a total of three base pair substitutions defining five haplotypes. Association studies based on these haplotypes revealed no significant differences between PD patients and 344 control individuals. Therefore, NF-L is unlikely to play a major role in the pathogenesis of PD. [less ▲]

Detailed reference viewed: 124 (0 UL)