References of "Pozzetti, Gabriele 50008765"
     in
Bookmark and Share    
Full Text
See detailBerechnung des Transportes von Treibgut bei Hochwasser
Peters, Bernhard UL; Pozzetti, Gabriele UL; Liao, Yu-Chung UL

in 39. DRESDNER WASSERBAUKOLLOQUIUM (2016)

Hochwasser hervorgerufen durch natürliche Ursachen wie Schneeschmelze oder durch bauliche Maßnahmen wie Flussbegradigung verursacht häufig eine Flutkatastrophe mit verheerenden Überschwemmungen. Zu den ... [more ▼]

Hochwasser hervorgerufen durch natürliche Ursachen wie Schneeschmelze oder durch bauliche Maßnahmen wie Flussbegradigung verursacht häufig eine Flutkatastrophe mit verheerenden Überschwemmungen. Zu den schon katastrophalen Folgen von Hochwasser addieren sich häufig noch die Schäden von gefährliche Treibgut, das mit den Fluten mitgerissen wird und unter Umständen über weite Strecken transportiert wird. Mitgerissenes Treibgut kann zur Verklausung von Brücken führen oder auch Bauwerke zerstören. Um die Folgen eines Hochwassers einschließlich Transport von Treibgut abschätzen zu können, sind numerische Werkzeuge eine adäquate Ergänzung zu experimentellen Methoden, die oft mit einem sehr hohen Aufwand verbunden sind. Deshalb wird im vorliegenden Beitrag eine neue und innovative numerischer Ansatz vorgestellt, der den Transport von Treibgut bei Hochwasser aber auch bei Normalwasser beschreibt. Dazu werden die beiden numerischen Methoden beruhend auf einem diskreten und kontinuierlichem Ansatz gekoppelt. Letzterer beinhaltet die Euler Methoden, mit denen die Strömung des Wassers im Rahmen von bewährten Rechenmethoden der Computational Fluid Dynamik (CFD) bestimmt wird. Treibgut wird diskret betrachtet, in dem es mit der Diskreten Element Methode (DEM) beschreiben wird. Damit kann sowohl jedes einzelne Element des Treibgutes berücksichtigt werden als auch seine Eigenschaften wie Größe, Form und Gewicht. Innerhalb dieses Ansatzes können die Kontaktkräfte zwischen den einzelnen Elementen des Treibgutes berechnet werden, mit denen sich Geschwindigkeit, Position und Orientierung des Treibgutes bestimmen lassen. Zusätzlich wird über eine Kopplung zur fluiden Phase der Einfluss sowohl der Wassergeschwindigkeit als des Auftriebs mit berücksichtigt. [less ▲]

Detailed reference viewed: 156 (21 UL)
Full Text
Peer Reviewed
See detailA preliminary investigation of the growth of an aneurysm with a multiscale monolithic Fluid-Structure interaction solver
Cerroni, D.; Manservisi, S.; Pozzetti, Gabriele UL

in Journal of Physics: Conference Series (2015), 655(1), 012050

In this work we investigate the potentialities of multi-scale engineering techniques to approach complex problems related to biomedical and biological fields. In particular we study the interaction ... [more ▼]

In this work we investigate the potentialities of multi-scale engineering techniques to approach complex problems related to biomedical and biological fields. In particular we study the interaction between blood and blood vessel focusing on the presence of an aneurysm. The study of each component of the cardiovascular system is very difficult due to the fact that the movement of the fluid and solid is determined by the rest of system through dynamical boundary conditions. The use of multi-scale techniques allows us to investigate the effect of the whole loop on the aneurysm dynamic. A three-dimensional fluid-structure interaction model for the aneurysm is developed and coupled to a mono-dimensional one for the remaining part of the cardiovascular system, where a point zero-dimensional model for the heart is provided. In this manner it is possible to achieve rigorous and quantitative investigations of the cardiovascular disease without loosing the system dynamic. In order to study this biomedical problem we use a monolithic fluid-structure interaction (FSI) model where the fluid and solid equations are solved together. The use of a monolithic solver allows us to handle the convergence issues caused by large deformations. By using this monolithic approach different solid and fluid regions are treated as a single continuum and the interface conditions are automatically taken into account. In this way the iterative process characteristic of the commonly used segregated approach, it is not needed any more. [less ▲]

Detailed reference viewed: 159 (35 UL)
Full Text
Peer Reviewed
See detailNumerical validation of a κ-ω-κ θ -ω θ heat transfer turbulence model for heavy liquid metals
Cerroni, D.; Vià, R. Da; Manservisi, S. et al

in Journal of Physics: Conference Series (2015), 655(1), 012046

The correct prediction of heat transfer in turbulent flows is relevant in almost all industrial applications but many of the heat transfer models available in literature are validated only for ordinary ... [more ▼]

The correct prediction of heat transfer in turbulent flows is relevant in almost all industrial applications but many of the heat transfer models available in literature are validated only for ordinary fluids with Pr ≃ 1. In commercial Computational Fluid Dynamics codes only turbulence models with a constant turbulent Prandtl number of 0.85 — 0.9 are usually implemented but in heavy liquid metals with low Prandtl numbers it is well known that these models fail to reproduce correlations based on experimental data. In these fluids heat transfer is mainly due to molecular diffusion and the time scales of temperature and velocity fields are rather different, so simple turbulence models based on similarity between temperature and velocity cannot reproduce experimental correlations. In order to reproduce experimental results and Direct Numerical Simulation data obtained for fluids with Pr ≃ 0.025 we introduce a κ-ε-κ θ -ε θ turbulence model. This model, however, shows some numerical instabilities mainly due to the strong coupling between κ and ε on the walls. In order to fix this problem we reformulate the model into a new four parameter κ-ω-κ θ -ω θ where the dissipation rate on the wall is completely independent on the fluctuations. The model improves numerical stability and convergence. Numerical simulations in plane and channel geometries are reported and compared with experimental, Direct Numerical Simulation results and with results obtained with the κ-ε formulation, in order to show the model capabilities and validate the improved κ-ω model. [less ▲]

Detailed reference viewed: 80 (8 UL)