References of "Perucca, Antonella 50028796"
     in
Bookmark and Share    
Full Text
See detailThe Hardest Logic Puzzle Ever
Perucca, Antonella UL

E-print/Working paper (n.d.)

Detailed reference viewed: 45 (0 UL)
Full Text
See detailSOS Sudoku
Perucca, Antonella UL

E-print/Working paper (n.d.)

Detailed reference viewed: 20 (0 UL)
Full Text
See detailExplicit Kummer theory for quadratic fields
Hörmann, Fritz; Perucca, Antonella UL; Sgobba, Pietro UL et al

E-print/Working paper (n.d.)

Let K be a quadratic number field. If \alpha \in K*, we describe an explicit procedure to compute all Kummer degrees [K(\zeta_m,\sqrt[n]{\alpha}):K(\zeta_m)] for n,m \geq 1, where \zeta_m denotes a ... [more ▼]

Let K be a quadratic number field. If \alpha \in K*, we describe an explicit procedure to compute all Kummer degrees [K(\zeta_m,\sqrt[n]{\alpha}):K(\zeta_m)] for n,m \geq 1, where \zeta_m denotes a primitive m-th root of unity and n divides m. We can also replace \alpha by any finitely generated subgroup of K*. [less ▲]

Detailed reference viewed: 120 (10 UL)
Full Text
See detailArithmetic Billiards
Perucca, Antonella UL; Reguengo da Sousa, Joe; Tronto, Sebastiano UL

E-print/Working paper (n.d.)

Detailed reference viewed: 46 (2 UL)
Full Text
See detailKummer extensions of number fields (the case of rank 2)
Perucca, Antonella UL

E-print/Working paper (n.d.)

Detailed reference viewed: 58 (14 UL)
Full Text
See detailFour Riddles with Four Brothers
Perucca, Antonella UL

E-print/Working paper (n.d.)

Detailed reference viewed: 36 (1 UL)
Full Text
See detailKummer theory for number fields via entanglement groups
Perucca, Antonella UL; Sgobba, Pietro UL; Tronto, Sebastiano UL

E-print/Working paper (n.d.)

Let $K$ be a number field, and let $G$ be a finitely generated and torsion-free subgroup of $K^\times$. We are interested in computing the degree of the cyclotomic-Kummer extension $K(\sqrt[n]{G})$ over ... [more ▼]

Let $K$ be a number field, and let $G$ be a finitely generated and torsion-free subgroup of $K^\times$. We are interested in computing the degree of the cyclotomic-Kummer extension $K(\sqrt[n]{G})$ over $K$, where $\sqrt[n]{G}$ consists of all $n$-th roots of the elements of $G$. We develop the theory of entanglements introduced by Lenstra, and apply it to compute the above degrees. [less ▲]

Detailed reference viewed: 90 (4 UL)
Full Text
See detailEvery number is the beginning of a power of $2$
Perucca, Antonella UL

E-print/Working paper (n.d.)

Detailed reference viewed: 38 (2 UL)