References of "Ottersten, Björn 50002797"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailSimultaneous Wireless Information and Power Transfer in UDN with Caching Architecture
Gautam, Sumit UL; Vu, Thang Xuan UL; Chatzinotas, Symeon UL et al

in Duong, Trung; Chu, Xiaoli; Suraweera, Himal (Eds.) Ultra-Dense Networks for 5G and Beyond - Modelling, Analysis, and Applications (2019)

In this chapter, we investigate the performance of a time-switching (TS) based energy harvesting model for cache-assisted simultaneous wireless transmission of information and energy (Wi-TIE). In the ... [more ▼]

In this chapter, we investigate the performance of a time-switching (TS) based energy harvesting model for cache-assisted simultaneous wireless transmission of information and energy (Wi-TIE). In the considered system, a relay which is equipped with both caching and energy harvesting capabilities helps a source to convey information to a destination. Based on the time-splitting mechanism, we analyze the effect of caching on the system performance in terms of stored energy at the relay and the relay-destination link throughput. In particular, two optimization problems are formulated to maximize the energy stored at the relay and the relay-destination throughput. By using KKT method, closed-form solution are obtained for both the problems. Finally, the performance of the proposed design under various operating conditions and parameter values is illustrated using numerical results. [less ▲]

Detailed reference viewed: 144 (33 UL)
Full Text
Peer Reviewed
See detailA View-invariant Framework for Fast Skeleton-based Action Recognition Using a Single RGB Camera
Ghorbel, Enjie UL; Papadopoulos, Konstantinos UL; Baptista, Renato UL et al

in 14th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, Prague, 25-27 February 2018 (2019, February)

View-invariant action recognition using a single RGB camera represents a very challenging topic due to the lack of 3D information in RGB images. Lately, the recent advances in deep learning made it ... [more ▼]

View-invariant action recognition using a single RGB camera represents a very challenging topic due to the lack of 3D information in RGB images. Lately, the recent advances in deep learning made it possible to extract a 3D skeleton from a single RGB image. Taking advantage of this impressive progress, we propose a simple framework for fast and view-invariant action recognition using a single RGB camera. The proposed pipeline can be seen as the association of two key steps. The first step is the estimation of a 3D skeleton from a single RGB image using a CNN-based pose estimator such as VNect. The second one aims at computing view-invariant skeleton-based features based on the estimated 3D skeletons. Experiments are conducted on two well-known benchmarks, namely, IXMAS and Northwestern-UCLA datasets. The obtained results prove the validity of our concept, which suggests a new way to address the challenge of RGB-based view-invariant action recognition. [less ▲]

Detailed reference viewed: 307 (22 UL)
Full Text
Peer Reviewed
See detailInexact Block Coordinate Descent Algorithms for Nonsmooth Nonconvex Optimization
Yang, Yang; Pesavento, Marius; Luo, Zhi-Quan et al

in IEEE Transactions on Signal Processing (2019)

In this paper, we propose an inexact block coordinate descent algorithm for large-scale nonsmooth nonconvex optimization problems. At each iteration, a particular block variable is selected and updated by ... [more ▼]

In this paper, we propose an inexact block coordinate descent algorithm for large-scale nonsmooth nonconvex optimization problems. At each iteration, a particular block variable is selected and updated by solving the original optimization problem with respect to that block variable inexactly. More precisely, a local approximation of the original optimization problem is solved. The proposed algorithm has several attractive features, namely, i) high flexibility, as the approximation function only needs to be strictly convex and it does not have to be a global upper bound of the original function; ii) fast convergence, as the approximation function can be designed to exploit the problem structure at hand and the stepsize is calculated by the line search; iii) low complexity, as the approximation subproblems are much easier to solve and the line search scheme is carried out over a properly constructed differentiable function; iv) guaranteed convergence of a subsequence to a stationary point, even when the objective function does not have a Lipschitz continuous gradient. Interestingly, when the approximation subproblem is solved by a descent algorithm, convergence of a subsequence to a stationary point is still guaranteed even if the approximation subproblem is solved inexactly by terminating the descent algorithm after a finite number of iterations. These features make the proposed algorithm suitable for large-scale problems where the dimension exceeds the memory and/or the processing capability of the existing hardware. These features are also illustrated by several applications in signal processing and machine learning, for instance, network anomaly detection and phase retrieval. [less ▲]

Detailed reference viewed: 57 (4 UL)
Full Text
Peer Reviewed
See detailFPGA Acceleration for Computationally Efficient Symbol-Level Precoding in Multi-User Multi-Antenna Communication Systems
Krivochiza, Jevgenij UL; Merlano Duncan, Juan Carlos UL; Andrenacci, Stefano UL et al

in IEEE Access (2019)

In this paper, we demonstrate an FPGA accelerated design of the computationally efficient Symbol-Level Precoding (SLP) for high-throughput communication systems. The SLP technique recalculates optimal ... [more ▼]

In this paper, we demonstrate an FPGA accelerated design of the computationally efficient Symbol-Level Precoding (SLP) for high-throughput communication systems. The SLP technique recalculates optimal beam-forming vectors by solving a non-negative least squares (NNLS) problem per every set of transmitted symbols. It exploits the advantages of constructive inter-user interference to minimize the total transmitted power and increase service availability. The benefits of using SLP come with a substantially increased computational load at a gateway. The FPGA design enables the SLP technique to perform in realtime operation mode and provide a high symbol throughput for multiple receive terminals. We define the SLP technique in a closed-form algorithmic expression and translate it to Hardware Description Language (HDL) and build an optimized HDL core for an FPGA. We evaluate the FPGA resource occupation, which is required for high throughput multiple-input-multiple-output (MIMO) systems with sizeable dimensions. We describe the algorithmic code, the I/O ports mapping and the functional behavior of the HDL core. We deploy the IP core to an actual FPGA unit and benchmark the energy efficiency performance of SLP. The synthetic tests demonstrate a fair energy efficiency improvement of the proposed closed-form algorithm, also compared to the best results obtained through MATLAB numerical simulations. [less ▲]

Detailed reference viewed: 178 (34 UL)
Full Text
Peer Reviewed
See detailDemonstrator of Precoding Technique for a Multi-Beams Satellite System
Maturo, Nicola UL; Merlano Duncan, Juan Carlos UL; Krivochiza, Jevgenij UL et al

in 2019 8th International Workshop on Tracking, Telemetry and Command Systems for Space Applications (TTC) (2019)

Detailed reference viewed: 57 (13 UL)
Full Text
Peer Reviewed
See detailPower and Flow Assignment for 5G Integrated Terrestrial-Satellite Backhaul Networks
Lagunas, Eva UL; Lei, Lei UL; Chatzinotas, Symeon UL et al

in IEEE Wireless Communications and Networking Conference, Marrakech, Morocco, April 2019 (2019)

Detailed reference viewed: 123 (24 UL)
Full Text
Peer Reviewed
See detailDesigning MPSK Sequences and Doppler Filter Bank in Cognitive Radar Systems
Raei, Ehsan UL; Alaeekerahroodi, Mohammad UL; Shankar, Bhavani UL et al

in International Radar Conference, france, Toulon 23-27 September, 2019 (2019)

In this paper, we propose an attractive method to jointly design discrete phase radar sequence and receive filter bank with the aim of enhancing Signal to Interference and Noise Ratio (SINR) in a ... [more ▼]

In this paper, we propose an attractive method to jointly design discrete phase radar sequence and receive filter bank with the aim of enhancing Signal to Interference and Noise Ratio (SINR) in a cognitive radar system. Towards this, we consider maximizing the worst case SINR at the output of the filter bank when transmitting M-ary Phase Shift Keying (MPSK) sequences, an exercise hitherto not considered. This maximization results in a max-min optimization problem that is multi-variable and non-convex, where we propose an efficient algorithm based on the Coordinate Descent (CD) framework to address it. The gains demonstrated by the proposed algorithm over the state of the art as well as its discrete phase property render the designed sequences attractive for hardware implementation while enabling efficient utilization of transmit power. [less ▲]

Detailed reference viewed: 137 (8 UL)
Full Text
Peer Reviewed
See detailTwo-stage RGB-based Action Detection using Augmented 3D Poses
Papadopoulos, Konstantinos UL; Ghorbel, Enjie UL; Baptista, Renato UL et al

in 18th International Conference on Computer Analysis of Images and Patterns SALERNO, 3-5 SEPTEMBER, 2019 (2019)

In this paper, a novel approach for action detection from RGB sequences is proposed. This concept takes advantage of the recent development of CNNs to estimate 3D human poses from a monocular camera. To ... [more ▼]

In this paper, a novel approach for action detection from RGB sequences is proposed. This concept takes advantage of the recent development of CNNs to estimate 3D human poses from a monocular camera. To show the validity of our method, we propose a 3D skeleton-based two-stage action detection approach. For localizing actions in unsegmented sequences, Relative Joint Position (RJP) and Histogram Of Displacements (HOD) are used as inputs to a k-nearest neighbor binary classifier in order to define action segments. Afterwards, to recognize the localized action proposals, a compact Long Short-Term Memory (LSTM) network with a de-noising expansion unit is employed. Compared to previous RGB-based methods, our approach offers robustness to radial motion, view-invariance and low computational complexity. Results on the Online Action Detection dataset show that our method outperforms earlier RGB-based approaches. [less ▲]

Detailed reference viewed: 118 (10 UL)
Full Text
Peer Reviewed
See detailDeploying Dynamic On-Board Signal Processing Schemes for Multibeam Satellite Systems
Joroughi, Vahid UL; Kibria, Mirza UL; Lagunas, Eva UL et al

in Deploying Dynamic On-Board Signal Processing Schemes for Multibeam Satellite Systems (2019)

This paper designs dynamic on-board signal processing schemes in a multiple gateway multibeam satellite system where full frequency reuse pattern is considered among the beams and feeds. In particular, we ... [more ▼]

This paper designs dynamic on-board signal processing schemes in a multiple gateway multibeam satellite system where full frequency reuse pattern is considered among the beams and feeds. In particular, we deploy on-board Joint Precoding, Feed selection and Signal switching mechanism (JPFS) so that the following advantages are realized, I) No need of Channel State Information (CSI) exchange among the gateways and satellite, since the performance of precoding is highly sensitive to the quality of CSI, II) In case one gateway fails, rerouting signals through other gateways can be applied without any extra signal processing, III) Properly selecting on-board feed/s to serve each user which generates maximum gain toward corresponding user, IV) Flexibly switching the signals received from the gateways to requested users where each user can dynamically request traffic from any gateway, and V) Multiple user with multiple traffic streams can be dynamically served at each beam. However, deploying such JPFS architecture imposes high complexity to the satellite payload. To tackle this issue, this study aims at deploying JPFS that can provide affordable complexity at the payload. In addition, while increasing the data demand imposes extensive bandwidth resources requirement in the feeder link, the proposed JPFS design works efficiently with available feeder link resources even if the data demand increases. The proposed design is evaluated with a close-to-real beam pattern and the latest broadband communication standard for satellite communications. [less ▲]

Detailed reference viewed: 54 (10 UL)
Full Text
Peer Reviewed
See detailSlicing based Resource Allocation for Multiplexing of eMBB and URLLC Services in 5G Wireless Networks
Korrai, Praveenkumar UL; Lagunas, Eva UL; Sharma, Shree Krishna UL et al

in Slicing based Resource Allocation for Multiplexing of eMBB and URLLC Services in 5G Wireless Networks (2019)

Detailed reference viewed: 123 (21 UL)
Full Text
Peer Reviewed
See detailMargin-based Active Online Learning Techniques for Cooperative Spectrum Sharing in CR Networks
Korrai, Praveenkumar UL; Lagunas, Eva UL; Sharma, Shree Krishna UL et al

in International Conference on Cognitive Radio Oriented Wireless Networks (CROWNCOM), Poznan, Poland, June 2019 (2019)

Detailed reference viewed: 147 (25 UL)
Full Text
Peer Reviewed
See detailSatellite Links Integrated in 5G SDN-enabled Backhaul Networks: An Iterative Joint Power and Flow Assignment
Lagunas, Eva UL; Lei, Lei UL; Chatzinotas, Symeon UL et al

in European Signal Processing Conference (EUSIPCO), A Coruna, Spain, Sept. 2019 (2019)

Detailed reference viewed: 88 (12 UL)
Full Text
Peer Reviewed
See detailLinear Precoding Design for Cache-aided Full-duplex Networks
Vu, Thang Xuan UL; Vu, Trinh Anh; Lei, Lei UL et al

in 2019 IEEE Wireless Communications and Networking Conference (WCNC) (2019)

Detailed reference viewed: 39 (4 UL)
Full Text
Peer Reviewed
See detailAn Asymptotically Efficient Weighted Least Squares Estimator for Co-Array-Based DoA Estimation
Sedighi, Saeid UL; Shankar, Bhavani UL; Ottersten, Björn UL

in IEEE Transactions on Signal Processing (2019)

Co-array-based Direction of Arrival (DoA) estimation using Sparse Linear Arrays (SLAs) has recently gained considerable interest in array processing thanks to its capability of providing enhanced degrees ... [more ▼]

Co-array-based Direction of Arrival (DoA) estimation using Sparse Linear Arrays (SLAs) has recently gained considerable interest in array processing thanks to its capability of providing enhanced degrees of freedom. Although the literature presents a variety of estimators in this context, none of them are proven to be statistically efficient. This work introduces a novel estimator for the co-array-based DoA estimation employing the Weighted Least Squares (WLS) method. An analytical expression for the large sample performance of the proposed estimator is derived. Then, an optimal weighting is obtained so that the asymptotic performance of the proposed WLS estimator coincides with the Cram\'{e}r-Rao Bound (CRB), thereby ensuring asymptotic statistical efficiency of resulting WLS estimator. This implies that the proposed WLS estimator has a significantly better performance compared to existing methods. Numerical simulations are provided to validate the analytical derivations and corroborate the improved performance. [less ▲]

Detailed reference viewed: 208 (11 UL)
Full Text
Peer Reviewed
See detailEnergy Efficient Design for Coded Caching Delivery Phase
Vu, Thang Xuan UL; Lei, Lei UL; Chatzinotas, Symeon UL et al

in 2019 IEEE International Conference on Recent Advances in Signal Processing, Telecommunications & Computing (SigTelCom) (2019)

Detailed reference viewed: 34 (6 UL)
Full Text
Peer Reviewed
See detailLocalized Trajectories for 2D and 3D Action Recognition
Papadopoulos, Konstantinos UL; Demisse, Girum UL; Ghorbel, Enjie UL et al

in Sensors (2019)

The Dense Trajectories concept is one of the most successful approaches in action recognition, suitable for scenarios involving a significant amount of motion. However, due to noise and background motion ... [more ▼]

The Dense Trajectories concept is one of the most successful approaches in action recognition, suitable for scenarios involving a significant amount of motion. However, due to noise and background motion, many generated trajectories are irrelevant to the actual human activity and can potentially lead to performance degradation. In this paper, we propose Localized Trajectories as an improved version of Dense Trajectories where motion trajectories are clustered around human body joints provided by RGB-D cameras and then encoded by local Bag-of-Words. As a result, the Localized Trajectories concept provides an advanced discriminative representation of actions. Moreover, we generalize Localized Trajectories to 3D by using the depth modality. One of the main advantages of 3D Localized Trajectories is that they describe radial displacements that are perpendicular to the image plane. Extensive experiments and analysis were carried out on five different datasets. [less ▲]

Detailed reference viewed: 249 (13 UL)
Full Text
Peer Reviewed
See detailEnergy efficiency optimization in MIMO interference channels: A successive pseudoconvex approximation approach
Yang, Yang UL; Pesavento, Marius; Chatzinotas, Symeon UL et al

in IEEE Transactions on Signal Processing (2019)

Detailed reference viewed: 503 (68 UL)
Full Text
Peer Reviewed
See detailSymbol-Level Precoding for Low Complexity Transmitter Architectures in Large-Scale Antenna Array Systems
Domouchtsidis, Stavros; Tsinos, Christos UL; Chatzinotas, Symeon UL et al

in IEEE Transactions on Wireless Communications ( Early Access ) (2018)

In this paper we consider three transmitter designs for symbol-level-precoding (SLP), a technique that mitigates multiuser interference (MUI) in multiuser systems by designing the transmitted signals ... [more ▼]

In this paper we consider three transmitter designs for symbol-level-precoding (SLP), a technique that mitigates multiuser interference (MUI) in multiuser systems by designing the transmitted signals using the Channel State Information and the information-bearing symbols. The considered systems tackle the high hardware complexity and power consumption of existing SLP techniques by reducing or completely eliminating fully digital Radio Frequency (RF) chains. The first proposed architecture referred as, Antenna Selection SLP, minimizes the MUI by activating a subset of the available antennas and thus, reducing the number of required RF chains to the number of active antennas. In the other two architectures, which we refer to as RF domain SLP, the processing happens entirely in the RF domain, thus eliminating the need for multiple fully digital RF chains altogether. Instead, analog phase shifters directly modulate the signals on the transmit antennas. The precoding design for all the considered cases is formulated as a constrained least squares problem and efficient algorithmic solutions are developed via the Coordinate Descent method. Simulations provide insights on the power efficiency of the proposed schemes and the improvements over the fully digital counterparts. [less ▲]

Detailed reference viewed: 94 (12 UL)
Full Text
Peer Reviewed
See detailSequential Resource Distribution Technique for Multi-User OFDM-SWIPT based Cooperative Networks
Gautam, Sumit UL; Lagunas, Eva UL; Chatzinotas, Symeon UL et al

Scientific Conference (2018, December)

In this paper, we investigate resource allocation and relay selection in a dual-hop orthogonal frequency division multiplexing (OFDM)-based multi-user network where amplify-and-forward (AF) enabled relays ... [more ▼]

In this paper, we investigate resource allocation and relay selection in a dual-hop orthogonal frequency division multiplexing (OFDM)-based multi-user network where amplify-and-forward (AF) enabled relays facilitate simultaneous wireless information and power transfer (SWIPT) to the end-users. In this context, we address an optimization problem to maximize the end-users’ sum-rate subjected to transmit power and harvested energy constraints. Furthermore, the problem is formulated for both time-switching (TS) and power-splitting (PS) SWIPT schemes.We aim at optimizing the users’ SWIPT splitting factors as well as sub-carrier–destination assignment, sub-carrier pairing, and relay–destination coupling metrics. This kind of joint evaluation is combinatorial in nature with non-linear structure involving mixed-integer programming. In this vein, we propose a sub-optimal low complex sequential resource distribution (SRD) method to solve the aforementioned problem. The performance of the proposed SRD technique is compared with a semi-random resource allocation and relay selection approach. Simulation results reveal the benefits of the proposed design under several parameter values with various operating conditions to illustrate the efficiency of SWIPT schemes for the proposed techniques. [less ▲]

Detailed reference viewed: 176 (16 UL)