References of "Ottersten, Björn 50002797"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailEnergy-Efficient Hybrid Symbol-Level Precoding for Large-Scale mmWave Multiuser MIMO Systems
Haqiqatnejad, Alireza UL; Kayhan, Farbod UL; Ottersten, Björn UL

in IEEE Transactions on Communications (2021), 69(5), 3119-3134

We address the symbol-level precoding design problem for the downlink of a multiuser millimeter wave (mmWave) multiple-input multiple-output (MIMO) wireless system where the transmitter is equipped with a ... [more ▼]

We address the symbol-level precoding design problem for the downlink of a multiuser millimeter wave (mmWave) multiple-input multiple-output (MIMO) wireless system where the transmitter is equipped with a large-scale antenna array. The high cost and power consumption associated with the massive use of radio frequency (RF) chains prohibit fully-digital implementation of the precoder, and therefore, we consider a hybrid analog-digital architecture where a small-sized baseband precoder is followed by two successive networks of analog on-off switches and variable phase shifters according to a fully-connected structure. We jointly optimize the digital baseband precoder and the states of the switching network on a symbol-level basis, i.e., by exploiting both the channel state information (CSI) and the instantaneous data symbols, whereas the phase-shifting network is designed only based on the CSI due to practical considerations. Our approach to this joint optimization is to minimize the Euclidean distance between the optimal fully-digital and the hybrid symbol-level precoders. Remarkably, the use of a switching network allows for power-savings in the analog precoder by switching some of the phase shifters off according to the instantaneously optimized states of the switches. Our numerical results indicate that, on average, up to 50 percent of the phase shifters can be switched off. We provide an analysis of energy efficiency by adopting appropriate power dissipation models for the analog precoder, where it is shown that the energy efficiency of precoding can substantially be improved thanks to the phase shifter selection approach, compared to the fully-digital and the state-of-the-art hybrid symbol-level schemes. [less ▲]

Detailed reference viewed: 62 (12 UL)
Full Text
Peer Reviewed
See detailMachine Learning-Enabled Joint Antenna Selection and Precoding Design: From Offline Complexity to Online Performance
Vu, Thang Xuan UL; Chatzinotas, Symeon UL; Nguyen, van Dinh UL et al

in IEEE Transactions on Wireless Communications (2021), 20(6), 3710-3722

We investigate the performance of multi-user multiple-antenna downlink systems in which a base station (BS) serves multiple users via a shared wireless medium. In order to fully exploit the spatial ... [more ▼]

We investigate the performance of multi-user multiple-antenna downlink systems in which a base station (BS) serves multiple users via a shared wireless medium. In order to fully exploit the spatial diversity while minimizing the passive energy consumed by radio frequency (RF) components, the BS is equipped with M RF chains and N antennas, where M < N. Upon receiving pilot sequences to obtain the channel state information (CSI), the BS determines the best subset of M antennas for serving the users. We propose a joint antenna selection and precoding design (JASPD) algorithm to maximize the system sum rate subject to a transmit power constraint and quality of service (QoS) requirements. The JASPD overcomes the non-convexity of the formulated problem via a doubly iterative algorithm, in which an inner loop successively optimizes the precoding vectors, followed by an outer loop that tries all valid antenna subsets. Although approaching the (near) global optimality, the JASPD suffers from a combinatorial complexity, which may limit its application in real-time network operations. To overcome this limitation, we propose a learning-based antenna selection and precoding design algorithm (L-ASPA), which employs a deep neural network (DNN) to establish underlaying relations between the key system parameters and the selected antennas. The proposed L-ASPD is robust against the number of users and their locations, BS's transmit power, as well as the small-scale channel fading. With a well-trained learning model, it is shown that the L-ASPD significantly outperforms baseline schemes based on the block diagonalization and a learning-assisted solution for broadcasting systems and achieves higher effective sum rate than that of the JASPA under limited processing time. In addition, we observed that the proposed L-ASPD can reduce the computation complexity by 95% while retaining more than 95% of the optimal performance. [less ▲]

Detailed reference viewed: 142 (37 UL)
Full Text
Peer Reviewed
See detailEnergy-Efficient Hybrid Symbol-Level Precoding via Phase Shifter Selection in mmWave MU-MIMO Systems
Haqiqatnejad, Alireza UL; Kayhan, Farbod UL; Ottersten, Björn UL

in Energy-Efficient Hybrid Symbol-Level Precoding via Phase Shifter Selection in mmWave MU-MIMO Systems (2021, January 25)

We address the symbol-level precoding design problem for the downlink of a multiuser millimeter wave (mmWave) multiple-input multiple-output wireless system. We consider a hybrid analog-digital ... [more ▼]

We address the symbol-level precoding design problem for the downlink of a multiuser millimeter wave (mmWave) multiple-input multiple-output wireless system. We consider a hybrid analog-digital architecture with phase shifter selection where a small-sized baseband precoder is followed by two successive networks of analog on-off switches and variable phase shifters according to a fully-connected structure. We jointly optimize the digital baseband precoder and the states of the switching network on a symbol-level basis, i.e., by exploiting both the channel state information (CSI) and the instantaneous data symbols, while the phase-shifting network is designed only based on the CSI. Our approach to this joint optimization is to minimize the Euclidean distance between the optimal fully-digital and the hybrid symbol-level precoders. It is shown via numerical results that using the proposed approach, up to 50 percent of the phase shifters can be switched off on average, allowing for reductions in the power consumption of the phase-shifting network. Adopting appropriate power consumption models for the analog precoder, our energy efficiency analysis further shows that this power reduction can substantially improve the energy efficiency of the hybrid precoding compared to the fully-digital and the state-of-the-art schemes. [less ▲]

Detailed reference viewed: 73 (14 UL)
Full Text
Peer Reviewed
See detailCompletion Time Minimization in NOMA Systems:Learning for Combinatorial Optimization
Wang, Anyue UL; Lei, Lei UL; Lagunas, Eva UL et al

in IEEE Networking Letters (2021)

In this letter, we study a completion-time minimization problem by jointly optimizing time slots (TSs) and power allocation for time-critical non-orthogonal multiple access (NOMA) systems. The original ... [more ▼]

In this letter, we study a completion-time minimization problem by jointly optimizing time slots (TSs) and power allocation for time-critical non-orthogonal multiple access (NOMA) systems. The original problem is non-linear/non-convex with discrete variables, leading to high computational complexity in conventional iterative methods. Towards an efficient solution, we train deep neural networks to perform fast and high-accuracy predictions to tackle the difficult combinatorial parts, i.e., determining the minimum consumed TSs and user-TS allocation. Based on the learning-based predictions, we develop a low-complexity post-process procedure to provide feasible power allocation. The numerical results demonstrate promising improvements of the proposed scheme compared to other baseline schemes in terms of computational efficiency, approximating optimum, and feasibility guarantee. [less ▲]

Detailed reference viewed: 123 (34 UL)
Full Text
Peer Reviewed
See detailFeasible Point Pursuit and Successive Convex Approximation for Transmit Power Minimization in SWIPT-Multigroup Multicasting Systems
Gautam, Sumit UL; Lagunas, Eva UL; Chatzinotas, Symeon UL et al

in IEEE Transactions on Green Communications and Networking (2021)

We consider three wireless multi-group (MG) multicasting (MC) systems capable of handling heterogeneous user types viz., information decoding (ID) specific users with conventional receiver architectures ... [more ▼]

We consider three wireless multi-group (MG) multicasting (MC) systems capable of handling heterogeneous user types viz., information decoding (ID) specific users with conventional receiver architectures, energy harvesting (EH) only users with non-linear EH module, and users with joint ID and EH capabilities having separate units for the two operations, respectively. Each user is categorized under unique group(s), which can be of MC type specifically meant for ID users, and/or an energy group consisting of EH explicit users. The joint ID and EH users are a part of both EH group and single MC group. We formulate an optimization problem to minimize the total transmit power with optimal precoder designs for the three aforementioned scenarios, under certain quality-of-service constraints. The problem may be adapted to the well-known semidefinite program and solved via relaxation of rank-1 constraint. However, this process leads to performance degradation in some cases, which increases with the rank of solution obtained from the relaxed problem. Hence, we develop a novel technique motivated by the feasible-point pursuit successive convex approximation method in order to address the rank-related issue. The benefits of proposed method are illustrated under various operating conditions and parameter values, with comparison between the three above-mentioned scenarios. [less ▲]

Detailed reference viewed: 131 (18 UL)
Full Text
Peer Reviewed
See detailNOMA-Enabled Multi-Beam Satellite Systems: Joint Optimization to Overcome Offered-Requested Data Mismatches
Wang, Anyue UL; Lei, Lei UL; Lagunas, Eva UL et al

in IEEE Transactions on Vehicular Technology (2021), 70(1), 900-913

Non-orthogonal multiple access (NOMA) has potentials to improve the performance of multi-beam satellite systems. The performance optimization in satellite-NOMA systems could be different from that in ... [more ▼]

Non-orthogonal multiple access (NOMA) has potentials to improve the performance of multi-beam satellite systems. The performance optimization in satellite-NOMA systems could be different from that in terrestrial-NOMA systems, e.g., considering distinctive channel models, performance metrics, power constraints, and limited flexibility in resource management. In this paper, we adopt a metric, offered capacity to requested traffic ratio (OCTR), to measure the requested-offered data rate mismatch in multi-beam satellite systems. In the considered system, NOMA is applied to mitigate intra-beam interference while precoding is implemented to reduce inter-beam interference. We jointly optimize power, decoding orders, and terminal-timeslot assignment to improve the max-min fairness of OCTR. The problem is inherently difficult due to the presence of combinatorial and non-convex aspects. We first fix the terminal-timeslot assignment, and develop an optimal fast-convergence algorithmic framework based on Perron-Frobenius theory (PF) for the remaining joint power-allocation and decoding-order optimization problem. Under this framework, we propose a heuristic algorithm for the original problem, which iteratively updates the terminal-timeslot assignment and improves the overall OCTR performance. Numerical results show that the proposed algorithm improves the max-min OCTR by 40.2% over orthogonal multiple access (OMA) in average. [less ▲]

Detailed reference viewed: 276 (56 UL)
Full Text
Peer Reviewed
See detailCoverage Probability and Ergodic Capacity of Intelligent Reflecting Surface-Enhanced Communication Systems
Trinh, van Chien UL; Tu, Lam Thanh; Chatzinotas, Symeon UL et al

in IEEE Communications Letters (2021), 25(1), 69-73

This paper studies the performance of a single-input single-output (SISO) system enhanced by the assistance of an intelligent reflecting surface (IRS), which is equipped with a finite number of elements ... [more ▼]

This paper studies the performance of a single-input single-output (SISO) system enhanced by the assistance of an intelligent reflecting surface (IRS), which is equipped with a finite number of elements under Rayleigh fading channels. From the instantaneous channel capacity, we compute a closed-form expression of the coverage probability as a function of statistical channel information only. A scaling law of the coverage probability and the number of phase shifts is further obtained. The ergodic capacity is derived, then a simple upper bound to simplify matters of utilizing the symbolic functions and can be applied for a long period of time. Numerical results manifest the tightness and effectiveness of our closed-form expressions compared with Monte-Carlo simulations. [less ▲]

Detailed reference viewed: 141 (22 UL)
Full Text
Peer Reviewed
See detailInterference Mitigation Methods for Coexistence of Radar and Communication
Kumar, Sumit UL; Mishra, Vijay Kumar; Mysore Rama Rao, Bhavani Shankar UL et al

in 15th European Conference on Antennas and Propagation (EuCAP) (2021)

We consider a communications-centric spectrum sharing scenario where the communications link has a minimum service constraint in throughput and the radar maximizes its receive signal-to-interference-plus ... [more ▼]

We consider a communications-centric spectrum sharing scenario where the communications link has a minimum service constraint in throughput and the radar maximizes its receive signal-to-interference-plus-noise ratio (SINR). Prior works on joint power, allocation indicate that, under a communication-centric scenario, radar transmit power is gradually reduced as the throughput demand for communications link increases. Such an approach results in severe degradation of radar SINR, especially when the communications link suffers an outage. We propose methods based on successive-interference-cancellation to improve the radar SINR. This comprises both coexistence and coordination approaches. Numerical experiments show significant improvement in radar SINR when communications throughput demand rises and eventually goes into the outage. [less ▲]

Detailed reference viewed: 46 (11 UL)
Full Text
Peer Reviewed
See detailGeneralized Multiplexed Waveform Design Framework for Cost-Optimized MIMO Radar
Hammes, C.; R., B. S. M.; Ottersten, Björn UL

in IEEE Transactions on Signal Processing (2021), 69

Cost-optimization through the minimization of hardware and processing costs with minimal loss in performance is an interesting design paradigm in evolving and emerging Multiple-Input-Multiple-Output (MIMO ... [more ▼]

Cost-optimization through the minimization of hardware and processing costs with minimal loss in performance is an interesting design paradigm in evolving and emerging Multiple-Input-Multiple-Output (MIMO) radar systems. This optimization is a challenging task due to the increasing Radio Frequency (RF) hardware complexity as well as the signal design algorithm complexity in applications requiring high angular resolution. Towards addressing these, the paper proposes a low-complexity signal design framework, which incorporates a generalized time multiplex scheme for reducing the RF hardware complexity with a subsequent discrete phase modulation. The scheme further aims at achieving simultaneous transmit beamforming and maximum virtual MIMO aperture to enable better target detection and discrimination performance. Furthermore, the paper proposes a low-complexity signal design scheme for beampattern matching in the aforementioned setting. The conducted performance evaluation indicates that the listed design objectives are met. [less ▲]

Detailed reference viewed: 80 (7 UL)
Full Text
Peer Reviewed
See detailTransfer Learning and Meta Learning Based Fast Downlink Beamforming Adaptation
Yuan, Yi; Zheng, G.; Wong, K.-K. et al

in IEEE Transactions on Wireless Communications (2021)

This paper studies fast adaptive beamforming optimization for the signal-to-interference-plus-noise ratio balancing problem in a multiuser multiple-input single-output downlink system. Existing deep ... [more ▼]

This paper studies fast adaptive beamforming optimization for the signal-to-interference-plus-noise ratio balancing problem in a multiuser multiple-input single-output downlink system. Existing deep learning based approaches to predict beamforming rely on the assumption that the training and testing channels follow the same distribution which may not hold in practice. As a result, a trained model may lead to performance deterioration when the testing network environment changes. To deal with this task mismatch issue, we propose two offline adaptive algorithms based on deep transfer learning and meta-learning, which are able to achieve fast adaptation with the limited new labelled data when the testing wireless environment changes. Furthermore, we propose an online algorithm to enhance the adaptation capability of the offline meta algorithm in realistic non-stationary environments. Simulation results demonstrate that the proposed adaptive algorithms achieve much better performance than the direct deep learning algorithm without adaptation in new environments. The meta-learning algorithm outperforms the deep transfer learning algorithm and achieves near optimal performance. In addition, compared to the offline meta-learning algorithm, the proposed online meta-learning algorithm shows superior adaption performance in changing environments. [less ▲]

Detailed reference viewed: 51 (5 UL)
Full Text
Peer Reviewed
See detailOn the Performance of One-Bit DoA Estimation via Sparse Linear Arrays
Sedighi, Saeid UL; Mysore Rama Rao, Bhavani Shankar UL; Soltanalian, Mojtaba et al

in IEEE Transactions on Signal Processing (2021)

Direction of Arrival (DoA) estimation using Sparse Linear Arrays (SLAs) has recently gained considerable attention in array processing thanks to their capability to provide enhanced degrees of freedom in ... [more ▼]

Direction of Arrival (DoA) estimation using Sparse Linear Arrays (SLAs) has recently gained considerable attention in array processing thanks to their capability to provide enhanced degrees of freedom in resolving uncorrelated source signals. Additionally, deployment of one-bit Analog-to-Digital Converters (ADCs) has emerged as an important topic in array processing, as it offers both a low-cost and a low-complexity implementation. In this paper, we study the problem of DoA estimation from one-bit measurements received by an SLA. Specifically, we first investigate the identifiability conditions for the DoA estimation problem from one-bit SLA data and establish an equivalency with the case when DoAs are estimated from infinite-bit unquantized measurements. Towards determining the performance limits of DoA estimation from one-bit quantized data, we derive a pessimistic approximation of the corresponding Cram\'{e}r-Rao Bound (CRB). This pessimistic CRB is then used as a benchmark for assessing the performance of one-bit DoA estimators. We also propose a new algorithm for estimating DoAs from one-bit quantized data. We investigate the analytical performance of the proposed method through deriving a closed-form expression for the covariance matrix of the asymptotic distribution of the DoA estimation errors and show that it outperforms the existing algorithms in the literature. Numerical simulations are provided to validate the analytical derivations and corroborate the resulting performance improvement. [less ▲]

Detailed reference viewed: 119 (7 UL)
Full Text
Peer Reviewed
See detailVertex Feature Encoding and Hierarchical Temporal Modeling in a Spatio-Temporal Graph Convolutional Network for Action Recognition
Papadopoulos, Konstantinos UL; Ghorbel, Enjie UL; Aouada, Djamila UL et al

in International Conference on Pattern Recognition, Milan 10-15 January 2021 (2021)

Detailed reference viewed: 146 (28 UL)
Full Text
Peer Reviewed
See detailAnalog Beamforming with Antenna Selection for Large-Scale Antenna Arrays
Arora, Aakash UL; Tsinos, Christos; Mysore Rama Rao, Bhavani Shankar UL et al

in Proc. 2021 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) (2021)

In large-scale antenna array (LSAA) wireless communication systems employing analog beamforming architectures, the placement or selection of a subset of antennas can significantly reduce the power ... [more ▼]

In large-scale antenna array (LSAA) wireless communication systems employing analog beamforming architectures, the placement or selection of a subset of antennas can significantly reduce the power consumption and hardware complexity. In this work, we propose a joint design of analog beamforming with antenna selection (AS) or antenna placement (AP) for an analog beamforming system. We approach this problem from a beampattern matching perspective and formulate a sparse unit-modulus least-squares (SULS) problem, which is a nonconvex problem due to the unit-modulus and the sparsity constraints. To that end, we propose an efficient and scalable algorithm based on the majorization-minimization (MM) framework for solving the SULS problem. We show that the sequence of iterates generated by the algorithm converges to a stationary point of the problem. Numerical results demonstrate that the proposed joint design of analog beamforming with AS outperforms conventional array architectures with fixed inter-antenna element spacing. [less ▲]

Detailed reference viewed: 106 (17 UL)
Full Text
Peer Reviewed
See detailEfficient Algorithms for Constant-Modulus Analog Beamforming
Arora, Aakash UL; Tsinos, Christos; Mysore Rama Rao, Bhavani Shankar UL et al

in IEEE Transactions on Signal Processing (2021)

The use of a large-scale antenna array (LSAA) has become an important characteristic of multi-antenna communication systems to achieve beamforming gains. For example, in millimeter wave (mmWave) systems ... [more ▼]

The use of a large-scale antenna array (LSAA) has become an important characteristic of multi-antenna communication systems to achieve beamforming gains. For example, in millimeter wave (mmWave) systems, an LSAA is employed at the transmitter/receiver end to combat severe propagation losses. In such applications, each antenna element has to be driven by a radio frequency (RF) chain for the implementation of fully-digital beamformers. This strict requirement significantly increases the hardware cost, complexity, and power consumption. Therefore, constant-modulus analog beamforming (CMAB) becomes a viable solution. In this paper, we consider the scaled analog beamforming (SAB) or CMAB architecture and design the system parameters by solving the beampattern matching problem. We consider two beampattern matching problems. In the first case, both the magnitude and phase of the beampattern are matched to the given desired beampattern whereas in the second case, only the magnitude of the beampattern is matched. Both the beampattern matching problems are cast as a variant of the constant-modulus least-squares problem. We provide efficient algorithms based on the alternating majorization-minimization (AMM) framework that combines the alternating minimization and the MM frameworks and the conventional-cyclic coordinate descent (C-CCD) framework to solve the problem in each case. We also propose algorithms based on a new modified-CCD (M-CCD) based approach. For all the developed algorithms we prove convergence to a Karush-Kuhn-Tucker (KKT) point (or a stationary point). Numerical results demonstrate that the proposed algorithms converge faster than state-of-the-art solutions. Among all the algorithms, the M-CCD-based algorithms have faster convergence when evaluated in terms of the number of iterations and the AMM-based algorithms offer lower complexity. [less ▲]

Detailed reference viewed: 167 (10 UL)
Full Text
Peer Reviewed
See detailUplink Power Control in Massive MIMO with Double Scattering Channels
Trinh, van Chien UL; Ngo, Quoc Hien; Chatzinotas, Symeon UL et al

in IEEE Transactions on Wireless Communications (2021)

Massive multiple-input multiple-output (MIMO) is a key technology for improving the spectral and energy efficiency in 5G-and-beyond wireless networks. For a tractable analysis, most of the previous works ... [more ▼]

Massive multiple-input multiple-output (MIMO) is a key technology for improving the spectral and energy efficiency in 5G-and-beyond wireless networks. For a tractable analysis, most of the previous works on Massive MIMO have been focused on the system performance with complex Gaussian channel impulse responses under rich-scattering environments. In contrast, this paper investigates the uplink ergodic spectral efficiency (SE) of each user under the double scattering channel model. We derive a closed-form expression of the uplink ergodic SE by exploiting the maximum ratio (MR) combining technique based on imperfect channel state information. We further study the asymptotic SE behaviors as a function of the number of antennas at each base station (BS) and the number of scatterers available at each radio channel. We then formulate and solve a total energy optimization problem for the uplink data transmission that aims at simultaneously satisfying the required SEs from all the users with limited data power resource. Notably, our proposed algorithms can cope with the congestion issue appearing when at least one user is served by lower SE than requested. Numerical results illustrate the effectiveness of the closed-form ergodic SE over Monte-Carlo simulations. Besides, the system can still provide the required SEs to many users even under congestion. [less ▲]

Detailed reference viewed: 111 (4 UL)
Full Text
Peer Reviewed
See detailUser Scheduling for Precoded Satellite Systems With Individual Quality of Service Constraints
Trinh, van Chien UL; Lagunas, Eva UL; Tung, Ta Hai et al

in Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Virtual Conference, Sept. 2021 (2021)

Detailed reference viewed: 110 (14 UL)
Full Text
See detailPrecoding-Aided Bandwidth Optimization for High Throughput Satellite Systems
Abdu, Tedros Salih UL; Lei, Lei UL; Kisseleff, Steven UL et al

Scientific Conference (2021)

Linear precoding boosts the spectral efficiency of the satellite system by mitigating the interference signal. Typically, all users are precoded and share the same bandwidth regardless of the user demand ... [more ▼]

Linear precoding boosts the spectral efficiency of the satellite system by mitigating the interference signal. Typically, all users are precoded and share the same bandwidth regardless of the user demand. This bandwidth utilization is not efficient since the user demand permanently varies. Hence, demand-aware bandwidth allocation with linear precoding is promising. In this paper, we exploited the synergy of linear precoding and flexible bandwidth allocation for geostationary (GEO) high throughput satellite systems. We formulate an optimization problem with the goal to satisfy the demand by taking into account that multiple precoded user groups can share the different bandwidth chunks. Hence, optimal beam groups are selected with minimum bandwidth requirement to match the per beam demand. The simulation results show that the proposed method of combining bandwidth allocation and linear precoding has better bandwidth efficiency and demand satisfaction than benchmark schemes. [less ▲]

Detailed reference viewed: 118 (43 UL)