![]() ; Kisseleff, Steven ![]() ![]() in Proceedings of IEEE Wireless Communications and Networking Conference (WCNC) (2022, May) Detailed reference viewed: 34 (0 UL)![]() Martinez Marrero, Liz ![]() ![]() ![]() in IEEE Access (2022), 10 Cohesive Distributed Satellite Systems (CDSSs) is a key enabling technology for the future of remote sensing and communication missions. However, they have to meet strict synchronization requirements ... [more ▼] Cohesive Distributed Satellite Systems (CDSSs) is a key enabling technology for the future of remote sensing and communication missions. However, they have to meet strict synchronization requirements before their use is generalized. When clock or local oscillator signals are generated locally at each of the distributed nodes, achieving exact synchronization in absolute phase, frequency, and time is a complex problem. In addition, satellite systems have significant resource constraints, especially for small satellites, which are envisioned to be part of the future CDSSs. Thus, the development of precise, robust, and resource-efficient synchronization techniques is essential for the advancement of future CDSSs. In this context, this survey aims to summarize and categorize the most relevant results on synchronization techniques for Distributed Satellite Systems (DSSs). First, some important architecture and system concepts are defined. Then, the synchronization methods reported in the literature are reviewed and categorized. This article also provides an extensive list of applications and examples of synchronization techniques for DSSs in addition to the most significant advances in other operations closely related to synchronization, such as inter-satellite ranging and relative position. The survey also provides a discussion on emerging data-driven synchronization techniques based on Machine Learning (ML). Finally, a compilation of current research activities and potential research topics is proposed, identifying problems and open challenges that can be useful for researchers in the field. [less ▲] Detailed reference viewed: 43 (5 UL)![]() Abdu, Tedros Salih ![]() ![]() ![]() in IEEE Open Journal of the Communications Society (2022) The scarce spectrum and power resources, the inter-beam interference, together with the high traffic demand, pose new major challenges for the next generation of Very High Throughput Satellite (VHTS ... [more ▼] The scarce spectrum and power resources, the inter-beam interference, together with the high traffic demand, pose new major challenges for the next generation of Very High Throughput Satellite (VHTS) systems. Accordingly, future satellites are expected to employ advanced resource/interference management techniques to achieve high system spectrum efficiency and low power consumption while ensuring user demand satisfaction. This paper proposes a novel demand and interference aware adaptive resource management for geostationary (GEO) VHTS systems. For this, we formulate a multi-objective optimization problem to minimize the total transmit power consumption and system bandwidth usage while matching the offered capacity with the demand per beam. In this context, we consider resource management for a system with full-precoding, i.e. all beams are precoded; without precoding, i.e. no precoding is applied to any beam; and with partial precoding, i.e. only some beams are precoded. The nature of the problem is non-convex and we solve it by jointly using the Dinkelbach and Successive Convex Approximation (SCA) methods. The simulation results show that the proposed method outperforms the benchmark schemes. Specifically, we show that the proposed method requires low resource consumption, low computational time, and simultaneously achieves a high demand satisfaction. [less ▲] Detailed reference viewed: 170 (53 UL)![]() Kavehmadavani, Fatemeh ![]() ![]() ![]() in IEEE Transactions on Wireless Communications (2022) Nowadays, Ambient Backscatter Communication (AmBC) systems have emerged as a green communication technology to enable massive self-sustainable wireless networks by leveraging Radio Frequency (RF) Energy ... [more ▼] Nowadays, Ambient Backscatter Communication (AmBC) systems have emerged as a green communication technology to enable massive self-sustainable wireless networks by leveraging Radio Frequency (RF) Energy Harvesting (EH) capability. A Full-duplex Ambient Backscatter Communication (FAmBC) network with a Full-duplex Access Point (AP), a dedicated Legacy User (LU), and several Backscatter Devices (BDs) is considered in this study. The AP with two antennas transfers downlink Orthogonal Frequency Division Multiplexing (OFDM) information and energy to the dedicated LU and several BDs, respectively, while receiving uplink backscattered information from BDs at the same time. One of the key aims in AmBC networks is to ensure fairness among BDs. To address this, we propose the Multi-objective Lexicographical Optimization Problem (MLOP), which aims to maximize the minimum BD’s … [less ▲] Detailed reference viewed: 36 (10 UL)![]() Martinez Marrero, Liz ![]() ![]() ![]() Scientific Conference (2022, April 10) This article presents a closed-loop differential phase compensation system for a precoding-enabled multibeam satellite forward link and its validation by live experiments on a GEO satellite scenario. The ... [more ▼] This article presents a closed-loop differential phase compensation system for a precoding-enabled multibeam satellite forward link and its validation by live experiments on a GEO satellite scenario. The precoding operation avoids inter-beam interference and maximizes the spectrum efficiency by full frequency reuse as an alternative to the traditional two-color or four-color reuse methods proposed in the DVB-S2 standard. However, the satellite payload introduces differential phase and frequency impairments, which can degrade the precoding performance. This work describes the implementation of the differential phase and frequency tracking and compensation loop in an end-to-end testbed over a multibeam satellite system with independent local oscillators. The developed system performs end-to-end real-time communication over the satellite link, including channel measurements and precompensation. Results are validated by an over-the-air demonstration using two beams of the SES-14 multibeam satellite. Each beam is transmitted by independent transponders, which results in differential frequency and phase offsets due to the transponder undisciplined local oscillators. This phase offset makes it impossible to use precoding without the phase compensation loop. We prove that the implemented system can successfully track and compensate the differential phase and frequency to improve precoding performance. [less ▲] Detailed reference viewed: 45 (7 UL)![]() Zivuku, Progress ![]() ![]() ![]() in Proceedings of IEEE Wireless Communications and Networking Conference (WCNC) (2022, April 10) Detailed reference viewed: 81 (25 UL)![]() Tran Dinh, Hieu ![]() ![]() ![]() in IEEE Transactions on Wireless Communications (2022), 21(3), 1621-1637 Unmanned aerial vehicle (UAV) communication hasemerged as a prominent technology for emergency communi-cations (e.g., natural disaster) in the Internet of Things (IoT)networks to enhance the ability of ... [more ▼] Unmanned aerial vehicle (UAV) communication hasemerged as a prominent technology for emergency communi-cations (e.g., natural disaster) in the Internet of Things (IoT)networks to enhance the ability of disaster prediction, damageassessment, and rescue operations promptly. A UAV can bedeployed as a flying base station (BS) to collect data from time-constrained IoT devices and then transfer it to a ground gateway(GW). In general, the latency constraint at IoT devices and UAV’slimited storage capacity highly hinder practical applicationsof UAV-assisted IoT networks. In this paper, full-duplex (FD)radio is adopted at the UAV to overcome these challenges. Inaddition, half-duplex (HD) scheme for UAV-based relaying isalso considered to provide a comparative study between twomodes (viz., FD and HD). Herein, a device is considered tobe successfully served iff its data is collected by the UAV andconveyed to GW timely during flight time. In this context,we aim to maximize the number of served IoT devices byjointly optimizing bandwidth, power allocation, and the UAVtrajectory while satisfying each device’s requirement and theUAV’s limited storage capacity. The formulated optimizationproblem is troublesome to solve due to its non-convexity andcombinatorial nature. Towards appealing applications, we firstrelax binary variables into continuous ones and transform theoriginal problem into a more computationally tractable form.By leveraging inner approximation framework, we derive newlyapproximated functions for non-convex parts and then develop asimple yet efficient iterative algorithm for its solutions. Next,we attempt to maximize the total throughput subject to thenumber of served IoT devices. Finally, numerical results showthat the proposed algorithms significantly outperform benchmarkapproaches in terms of the number of served IoT devices andsystem throughput. [less ▲] Detailed reference viewed: 102 (26 UL)![]() Vu, Thang Xuan ![]() ![]() ![]() in IEEE Transactions on Wireless Communications (2022), 21(3), 1794-1805 Multiuser techniques play a central role in the fifth-generation (5G) and beyond 5G (B5G) wireless networks that exploit spatial diversity to serve multiple users simultaneously in the same frequency ... [more ▼] Multiuser techniques play a central role in the fifth-generation (5G) and beyond 5G (B5G) wireless networks that exploit spatial diversity to serve multiple users simultaneously in the same frequency resource. It is well known that a multi-antenna base station (BS) can efficiently serve a number of users not exceeding the number of antennas at the BS via precoding design. However, when there are more users than the number of antennas at the BS, conventional precoding design methods perform poorly because inter-user interference cannot be efficiently eliminated. In this paper, we investigate the performance of a highly-loaded multiuser system in which a BS simultaneously serves a number of users that is larger than the number of antennas. We propose a dynamic bandwidth allocation and precoding design framework and apply it to two important problems in multiuser systems: i) User fairness maximization and ii) Transmit power minimization, both subject to predefined quality of service (QoS) requirements. The premise of the proposed framework is to dynamically assign orthogonal frequency channels to different user groups and carefully design the precoding vectors within every user group. Since the formulated problems are non-convex, we propose two iterative algorithms based on successive convex approximations (SCA), whose convergence is theoretically guaranteed. Furthermore, we propose a low-complexity user grouping policy based on the singular value decomposition (SVD) to further improve the system performance. Finally, we demonstrate via numerical results that the proposed framework significantly outperforms existing designs in the literature. [less ▲] Detailed reference viewed: 71 (17 UL)![]() ; ; et al in IEEE Transactions on Wireless Communications (2022), 21(8), 5962-5976 Massive multiple-input multiple-output (MIMO) is promising for low earth orbit (LEO) satellite communications due to the potential in enhancing the spectral efficiency. However, the conventional fully ... [more ▼] Massive multiple-input multiple-output (MIMO) is promising for low earth orbit (LEO) satellite communications due to the potential in enhancing the spectral efficiency. However, the conventional fully digital precoding architectures might lead to high implementation complexity and energy consumption. In this paper, hybrid analog/digital precoding solutions are developed for the downlink operation in LEO massive MIMO satellite communications, by exploiting the slow-varying statistical channel state information (CSI) at the transmitter. First, we formulate the hybrid precoder design as an energy efficiency (EE) maximization problem by considering both the continuous and discrete phase shift networks for implementing the analog precoder. The cases of both the fully and the partially connected architectures are considered. Since the EE optimization problem is nonconvex, it is in general difficult to solve. To make the EE maximization problem tractable, we apply a closed-form tight upper bound to approximate the ergodic rate. Then, we develop an efficient algorithm to obtain the fully digital precoders. Based on which, we further develop two different efficient algorithmic solutions to compute the hybrid precoders for the fully and the partially connected architectures, respectively. Simulation results show that the proposed approaches achieve significant EE performance gains over the existing baselines, especially when the discrete phase shift network is employed for analog precoding. [less ▲] Detailed reference viewed: 27 (0 UL)![]() ; ; et al in IEEE Transactions on Vehicular Technology (2022), 71(4), 4359-4372 Source localization plays a key role in many applications including radar, wireless and underwater communications. Among various localization methods, the most popular ones are Time-Of-Arrival (TOA), Time ... [more ▼] Source localization plays a key role in many applications including radar, wireless and underwater communications. Among various localization methods, the most popular ones are Time-Of-Arrival (TOA), Time-Difference-Of-Arrival (TDOA), Angle-Of-Arrival (AOA) and Received Signal Strength (RSS) based. Since the Cramér-Rao lower bounds (CRLB) of these methods depend on the sensor geometry explicitly, sensor placement becomes a crucial issue in source localization applications. In this paper, we consider finding the optimal sensor placements for the TOA, TDOA, AOA and RSS based localization scenarios. We first unify the three localization models by a generalized problem formulation based on the CRLB-related metric. Then a u nified op t imization fra m ework for o ptimal s ensor placemen t (UTMOST) is developed through the combination of the alternating direction method of multipliers (ADMM) and majorization-minimization (MM) techniques. Unlike the majority of the state-of-the-art works, the proposed UTMOST neither approximates the design criterion nor considers only uncorrelated noise in the measurements. It can readily adapt to to different design criteria (i.e. A, D and E-optimality) with slight modifications within the framework and yield the optimal sensor placements correspondingly. Extensive numerical experiments are performed to exhibit the efficacy and flexibility of the proposed framework. [less ▲] Detailed reference viewed: 25 (0 UL)![]() Tran Dinh, Hieu ![]() ![]() ![]() in IEEE Transactions on Vehicular Technology (2022), 71(5), 5187-5202 This paper investigates a wireless powered unmanned aerial vehicle (UAV) communication network with backscatter and caching technologies. Specifically, we assume a self-energized UAV with a cache memory ... [more ▼] This paper investigates a wireless powered unmanned aerial vehicle (UAV) communication network with backscatter and caching technologies. Specifically, we assume a self-energized UAV with a cache memory is deployed as a flying backscatter device (BD), term the UAV-enabled BD (UB), to relay the source’s signals to the destination. Whereas the source S can act as a wireless charging station or a base station to supply power or transmit information to the UB using the dynamic time splitting (DTS) method. The UAV utilizes its harvested energy for backscattering (i.e., passive communication) and transmit information (i.e., active communication) to the destination. In this context, we aim to maximize the total throughput by jointly optimizing the DTS ratio and the UB’s trajectory with caching capability at the UB. The formulation is troublesome to solve since it is a non-convex problem. To find solutions, we decompose the original problem into two sub-problems, whereas we first optimize the DTS ratio for a given UB’s trajectory and the UB’s trajectory optimization for a given DTS ratio. By using the KKT conditions, a closed-form expression for the optimal value of the DTS ratio is obtained, greatly reducing the computation time. Moreover, the solution of the second sub-problem can be acquired by adopting the successive convex approximation (SCA) technique. Consequently, an efficient alternating algorithm is proposed by leveraging the block coordinate descent (BCD) method. To show the advantages of the proposed BCD-based algorithm, we also provide the solution of the original problem applying the inner approximation (IA) method. Finally, the intensive numerical results demonstrate that our proposed schemes achieve significant throughput gain in comparison to the benchmark schemes. [less ▲] Detailed reference viewed: 23 (1 UL)![]() ; ; et al in IEEE Transactions on Information Forensics and Security (2022), 17 We consider an aeronautical ad-hoc network relying on aeroplanes operating in the presence of a spoofer. The aggregated signal received by the terrestrial base station is considered as “clean” or “normal” ... [more ▼] We consider an aeronautical ad-hoc network relying on aeroplanes operating in the presence of a spoofer. The aggregated signal received by the terrestrial base station is considered as “clean” or “normal”, if the legitimate aeroplanes transmit their signals and there is no spoofing attack. By contrast, the received signal is considered as “spurious” or “abnormal” in the face of a spoofing signal. An autoencoder (AE) is trained to learn the characteristics/features from a training dataset, which contains only normal samples associated with no spoofing attacks. The AE takes original samples as its input samples and reconstructs them at its output. Based on the trained AE, we define the detection thresholds of our spoofing discovery algorithm. To be more specific, contrasting the output of the AE against its input will provide us with a measure of geometric waveform similarity/dissimilarity in terms of the peaks of curves. To quantify the similarity between unknown testing samples and the given training samples (including normal samples), we first propose a so-called deviation-based algorithm . Furthermore, we estimate the angle of arrival (AoA) from each legitimate aeroplane and propose a so-called AoA-based algorithm . Then based on a sophisticated amalgamation of these two algorithms, we form our final detection algorithm for distinguishing the spurious abnormal samples from normal samples under a strict testing condition. In conclusion, our numerical results show that the AE improves the trade-off between the correct spoofing detection rate and the false alarm rate as long as the detection thresholds are carefully selected. [less ▲] Detailed reference viewed: 27 (0 UL)![]() ; Lagunas, Eva ![]() in IEEE Transactions on Vehicular Technology (2022) Detailed reference viewed: 24 (1 UL)![]() ; ; Tsinos, Christos ![]() in 2022 IEEE International Conference on Communications Workshops (ICC Workshops) (2022) To improve the efficient utilization of spectral and hardware resources, joint communications and sensing (JCS) has drawn extensive attention. Most existing JCS works focus on terrestrial networks and can ... [more ▼] To improve the efficient utilization of spectral and hardware resources, joint communications and sensing (JCS) has drawn extensive attention. Most existing JCS works focus on terrestrial networks and can not be straightforwardly applied in satellite systems due to the significantly different electromagnetic wave propagation properties. In this work, we investigate the application of JCS in massive multiple-input multiple-output (MIMO) low earth orbit (LEO) satellite systems. We first charac-terize the statistical wave propagation properties by considering beam squint effects. Based on this analysis, we propose a beam squint-aware JCS technique for hybrid analog/digital massive MIMO LEO satellite systems exploiting statistical channel s-tate information. Simulation results demonstrate that both the wireless communications and target sensing can be operated simultaneously with satisfactory performance, and the beam squint effects can be efficiently mitigated with the proposed method in typical LEO satellite systems. [less ▲] Detailed reference viewed: 27 (3 UL)![]() ; ; Mysore Rama Rao, Bhavani Shankar ![]() in ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2022) Direction-of-arrival (DOA) estimation can be represented as a sparse signal recovery problem and effectively solved by sparse Bayesian learning (SBL). For the DOA estimation in active sensing, the SBL ... [more ▼] Direction-of-arrival (DOA) estimation can be represented as a sparse signal recovery problem and effectively solved by sparse Bayesian learning (SBL). For the DOA estimation in active sensing, the SBL-based estimation error is related to the transmitted probing waveform. Therefore, it is expected to improve the estimation by waveform optimization. In this paper, we propose a recurrent scheme of waveform design by sequentially leveraging on the previous-round SBL estimates. Within this scheme, we formulate the waveform design problem as a minimization of the SBL estimation variance, which is non-convex and then solved by a majorization-minimization based algorithm. The simulations demonstrate the efficacy of the proposed design scheme in terms of avoiding incorrect detection and accelerating the DOA estimation convergence. Further, the results indicate that the waveform design is essentially a beampattern shaping methodology. [less ▲] Detailed reference viewed: 25 (0 UL)![]() ; ; Tran Dinh, Hieu ![]() in ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2022) Reconfigurable intelligent surfaces (RISs) have recently gained significant interest as an emerging technology for future wireless networks. This paper studies an RIS-assisted propagation environment ... [more ▼] Reconfigurable intelligent surfaces (RISs) have recently gained significant interest as an emerging technology for future wireless networks. This paper studies an RIS-assisted propagation environment, where a single-antenna source transmits data to a single-antenna destination in the presence of a weak direct link. We analyze and compare RIS designs based on long-term and short-term channel statistics in terms of coverage probability and ergodic rate. For the considered optimization designs, closed-form expressions for the coverage probability and ergodic rate are derived. We use numerical simulations to validate the obtained analytical framework. Also, we show that the considered optimal phase shift designs outperform several heuristic benchmarks. [less ▲] Detailed reference viewed: 25 (0 UL)![]() ; Tran Dinh, Hieu ![]() in IEEE Internet of Things Journal (2022), 9(21), —Physical layer security (PLS) and simultane ous wireless information and power transfer (SWIPT) in cooperative relaying have gained great interest as technolo gies for security and energy enhancement in ... [more ▼] —Physical layer security (PLS) and simultane ous wireless information and power transfer (SWIPT) in cooperative relaying have gained great interest as technolo gies for security and energy enhancement in Internet-of Things (IoT) networks. In this work, we investigate PLS for a SWIPT- and AF-enabled cooperative wireless IoT system, consisting of one source, multiple energy harvesting (EH) relays, and one destination, in the presence of an eaves dropper that tries to overhear the confidential information. Furthermore, an EH-friendly jammer is deployed to trans mit jamming signals aimed at the eavesdropper to improve the security system. In this context, a low complexity, sub optimal, but efficient relay selection method is proposed. More specifically, the relay is selected to convey informa tion such that it has the best channel to the source. Based on the proposed system model, the performance analysis of intercept probability (IP), asymptotic IP, and non-zero secrecy probability (NZSP) is analyzed by considering the time switching (TS)-based relaying strategy. Particularly, Tan N. Nguyen is with the Wireless Communications Re search Group, Faculty of Electrical and Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam. (e mail:nguyennhattan@tdtu.edu.vn). Dinh-Hieu Tran, Symeon Chatzinotas, and Bjorn Ottersten are with ¨ the Interdisciplinary Centre for Security, Reliability and Trust (SnT), the University of Luxembourg, Luxembourg. (e-mail: {hieu.tran-dinh, symeon.chatzinotas, bjorn.ottersten} @uni.lu). Miroslav Voznak is with VSB - Technical University of Ostrava, 17. listopadu 15/2172, 708 33 Ostrava - Poruba, Czech Republic. (e-mail:miroslav.voznak@vsb.cz). H. V. Poor is with the Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ 08544 USA. (email: poor@princeton.edu). Byung-Seo Kim is with the Department of Software and Com munications Engineering, Hongik University, Sejong 30016, South Korea (e-mail: jsnbs@hongik.ac.kr). Corresponding author: Van-Duc Phan is at Faculty of Automobile Technology, Van Lang University, Ho Chi Minh City, Vietnam. (email: duc.pv@vlu.edu.vn). This research was supported by the Ministry of Education, Youth and Sports of the Czech Republic under the grant SP2021/25 and e-INFRA CZ (ID:90140). the exact closed-form expression of IP is achieved applying modified Bessel function expansion. Finally, Monte-Carlo simulations are employed to corroborate the correctness and the efficiency of our mathematical analysis. [less ▲] Detailed reference viewed: 39 (0 UL)![]() ; Alaeekerahroodi, Mohammad ![]() in 2022 IEEE Radar Conference (RadarConf22) (2022) High-resolution FMCW radar systems are becoming an integral aspect of applications ranging from automotive safety and autonomous driving to health monitoring of infants and the elderly. This integration ... [more ▼] High-resolution FMCW radar systems are becoming an integral aspect of applications ranging from automotive safety and autonomous driving to health monitoring of infants and the elderly. This integration provides challenging scenarios that require radars with extremely high dynamic range (HDR) ADCs; these ADCs need to avoid saturation while offering high-performance and high-fidelity data-acquisition. The recent concept of Unlimited Sensing allows one to achieve high dynamic range (HDR) acquisition by recording low dynamic range, modulo samples. Interestingly, oversampling of these folded measurements, with a sampling rate independent of the modulo threshold, is sufficient to guarantee their perfect reconstruction for band-limited signals. This contrasts with the traditional methodology of increasing the dynamic range by adding a programmable-gain amplifier or operating multiple ADCs in parallel. This paper demonstrates an FMCW radar prototype that utilises the unlimited sampling strategy. Our hardware experiments show that even with the use of a modulo measurements of lower precision, the US reconstruction is able to match the performances of the conventional acquisition. Furthermore, our real-time processing capability demonstrates that our “proof-of-concept” approach is a viable solution for HDR FMCW radar signal processing, thus opening a pathway for future hardware-software optimization and integration of this technology with other mainstream systems. [less ▲] Detailed reference viewed: 54 (0 UL)![]() ; Tran Dinh, Hieu ![]() in IEEE Internet of Things Journal (2022), 9(12), Simultaneous wireless information and power transfer (SWIPT) and full-duplex (FD) have emerged as prominent technologies to overcome limited energy re sources and improve spectral efficiency (SE) in ... [more ▼] Simultaneous wireless information and power transfer (SWIPT) and full-duplex (FD) have emerged as prominent technologies to overcome limited energy re sources and improve spectral efficiency (SE) in Internet-of Things (IoT) networks. This article investigates the outage and throughput performance for a decode-and-forward (DF) relay SWIPT system, which consists of one source, multiple relays, and one destination. Herein, the relay nodes can harvest energy from the source’s signal and operate in the FD mode. Further, a sub-optimal, low-complexity, yet efficient relay selection scheme is proposed. Specifically, one relay is selected to convey information from a source to a destination so that it achieves the best channel from source to relays. Then, by considering two relaying strategies, termed static power splitting-based relaying (SPSR) and optimal dynamic power splitting-based relaying (ODPSR), performance analysis in terms of outage probability (OP) and throughput are performed for each one. Notably, the independent and non-identically distributed (i.n.i.d.) Rayleigh fading channels are considered, which poses new challenges for obtaining analytical expressions. In this context, we derive exact closed-form expressions for the OP and throughput of both SPSR and ODPSR schemes. Moreover, the optimal power splitting ratio of ODPSR is obtained to maximize the achievable capacity at the destination. Finally, extensive numerical and simulation results are presented to confirm our analytical findings. Both the simulation and analytical results show the superiority of ODPSR over SPSR. [less ▲] Detailed reference viewed: 24 (1 UL)![]() ; Domouchtsidis, Stavros ![]() ![]() in IEEE Global Communications Conference (2022) This paper studies the non-orthogonal multicast and unicast coordinated beamforming design for integrated terrestrial and satellite networks (ITSN), when the channel state information at the transmitter ... [more ▼] This paper studies the non-orthogonal multicast and unicast coordinated beamforming design for integrated terrestrial and satellite networks (ITSN), when the channel state information at the transmitter (CSIT) is imperfect. In order to mitigate the interference induced by simultaneous multicast and unicast links along with the spectrum coexisting mechanism for integrated terrestrial and satellite transmissions, we consider a two-layer layered division multiplexing (LDM) structure where the mul ticast and unicast services are provided in different layers. We formulate a coordinated beamforming problem with the objective to minimize the transmit power under individual quality of service (QoS) constraints. With regard to the unknown convexity of the transmit power minimization problem, we transform the original infeasible optimization into a deterministic optimization form with linear matrix inequality (LMI) by utilizing S-procedure and semi-definite relaxation (SDR) methods. Then, we introduce a penalty function and propose an iterative algorithm with guaranteed convergence to obtain optimal solutions. Simulation results demonstrate the superiority of the proposed coordinated beamforming scheme, especially for the case of imperfect CSIT, while our LDM based coordinated beamforming scheme signifi cantly outperforms the conventional ones in terms of sum rate. Index Terms—Integrated terrestrial and satellite networks (IT SN), beamforming, robust, layered division multiplexing (LDM) [less ▲] Detailed reference viewed: 31 (2 UL) |
||