References of "Ottersten, Björn 50002797"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailFinite-Alphabet Symbol-Level Multiuser Precoding for Massive MU-MIMO Downlink
Haqiqatnejad, Alireza UL; Kayhan, Farbod; Shahram, ShahbazPanahi et al

in IEEE Transactions on Signal Processing (2021), 69

We propose a finite-alphabet symbol-level precoding technique for massive multiuser multiple-input multiple-output (MU-MIMO) downlink systems which are equipped with finite-resolution digital-to-analog ... [more ▼]

We propose a finite-alphabet symbol-level precoding technique for massive multiuser multiple-input multiple-output (MU-MIMO) downlink systems which are equipped with finite-resolution digital-to-analog converters (DACs) of any precision. Using the idea of constructive interference (CI), we adopt a max-min fair design criterion which aims to maximize the minimum instantaneous received signal-to-noise ratio (SNR) among the user equipments (UEs) while ensuring a CI constraint for each UE under the restriction that the output of the precoder is a vector with finite-alphabet discrete elements. Due to this latter constraint, the design problem is an NP-hard quadratic program with discrete variables, and hence, is difficult to solve. In this paper, we tackle this difficulty by reformulating the problem in several steps into an equivalent continuous-domain biconvex form, including equivalent representations for discrete and binary constraints. Our final biconvex reformulation is obtained via an exact penalty approach and can efficiently be solved using a standard cyclic block coordinate descent algorithm. We evaluate the performance of the proposed finite-alphabet precoding design for DACs with different resolutions, where it is shown that employing low-resolution DACs can lead to higher power efficiencies. In particular, we focus on a setup with one-bit DACs and show through simulation results that compared to the existing schemes, the proposed design can achieve SNR gains of up to 2 dB. We further provide analytic and numerical analyses of complexity and show that our proposed algorithm is computationally efficient as it typically needs only a few tens of iterations to converge. [less ▲]

Detailed reference viewed: 33 (2 UL)
Full Text
Peer Reviewed
See detailJoint Transmit Waveform and Receive Filter Design for Dual-Function Radar-Communication Systems
Tsinos, Christos UL; Arora, Aakash UL; Chatzinotas, Symeon UL et al

in IEEE Journal of Selected Topics in Signal Processing (2021), 15(6), 1378-1392

In this paper, the problem of joint transmit waveform and receive filter design for dual-function radar-communication (DFRC) systems is studied. The considered system model involves a multiple antenna ... [more ▼]

In this paper, the problem of joint transmit waveform and receive filter design for dual-function radar-communication (DFRC) systems is studied. The considered system model involves a multiple antenna base station (BS) of a cellular system serving multiple single antenna users on the downlink. Furthermore, the BS simultaneously introduces sensing capabilities in the form of point-like target detection from the reflected return signals in a signal-dependent interference environment. A novel framework based on constrained optimization problems is proposed for the joint design of the transmit waveform and the radar receive filter such that different constraints related to the power amplifiers and the radar waveform are satisfied. In contrast to the existing approaches in the DFRC systems’ literature, the proposed approach does not require the knowledge of a predetermined radar beampattern in order to optimize the performance of the radar part through its approximation. Instead, a beampattern is generated by maximizing the radar receive signal-to-interference ratio (SINR) thus, enabling a more flexible design. Moreover, the radar receive filter processing and its optimization is considered for the first time on DFRC systems, enabling the effective exploitation of the available degrees of freedom in the radar receive array. Efficient algorithmic solutions with guaranteed convergence are developed for the defined constrained nonconvex optimization problems. The effectiveness of the proposed solutions is verified via numerical results. [less ▲]

Detailed reference viewed: 36 (5 UL)
Full Text
Peer Reviewed
See detailHybrid Active-and-Passive Relaying Model for 6G-IoT Greencom Networks with SWIPT
Gautam, Sumit UL; Solanki, Sourabh UL; Sharma, Shree Krishna UL et al

in Sensors (2021), 21

In order to support a massive number of resource-constrained Internet-of-Things (IoT) devices and machine-type devices, it is crucial to design a future beyond 5G/6G wireless networks in an energy ... [more ▼]

In order to support a massive number of resource-constrained Internet-of-Things (IoT) devices and machine-type devices, it is crucial to design a future beyond 5G/6G wireless networks in an energy-efficient manner while incorporating suitable network coverage expansion methodologies. To this end, this paper proposes a novel two-hop hybrid active-and-passive relaying scheme to facilitate simultaneous wireless information and power transfer (SWIPT) considering both time-switching (TS) and power-splitting (PS) receiver architectures, while dynamically modelling the involved dual-hop time-period (TP) metric. An optimization problem is formulated to jointly optimize the throughput, harvested energy, and transmit power of a SWIPT-enabled system with the proposed hybrid scheme. In this regard, we provide two distinct ways to obtain suitable solutions based on the Lagrange dual technique and Dinkelbach method assisted convex programming, respectively, where both the approaches yield an appreciable solution within polynomial computational time. The experimental results are obtained by directly solving the primal problem using a non-linear optimizer. Our numerical results in terms of weighted utility function show the superior performance of the proposed hybrid scheme over passive repeater-only and active relay-only schemes, while also depicting their individual performance benefits over the corresponding benchmark SWIPT systems with the fixed-TP. [less ▲]

Detailed reference viewed: 85 (7 UL)
Full Text
Peer Reviewed
See detailMassive MIMO Downlink Transmission for LEO Satellite Communications
Li, Ke-Xin; You, Li; Wang, Jiaheng et al

Poster (2021, September)

We investigate the downlink (DL) transmit strategy for massive multiple-input multiple-output (MIMO) low-earthorbit (LEO) satellite communication (SATCOM) systems, in which only the slow-varying ... [more ▼]

We investigate the downlink (DL) transmit strategy for massive multiple-input multiple-output (MIMO) low-earthorbit (LEO) satellite communication (SATCOM) systems, in which only the slow-varying statistical channel state information is known at the transmitter side. First, we establish the massive MIMO LEO satellite channel model, in which the uniform planar arrays are deployed at both the satellite and user terminals (UTs). Building on the rank-one property of satellite channel matrices, we show that transmitting a single data stream to each UT is optimal for the ergodic sum rate maximization. This result is of great importance for massive MIMO LEO SATCOM systems, since the sophisticated design of transmit covariance matrices is turned into that of precoding vectors, with no loss of optimality at all. Furthermore, we conceive an algorithm to compute the precoding vectors. Simulation results show the significant performance gains of the proposed approaches over the previous schemes. [less ▲]

Detailed reference viewed: 55 (15 UL)
Full Text
Peer Reviewed
See detailUAV Relay-Assisted Emergency Communications in IoT Networks: Resource Allocation and Trajectory Optimization
Tran Dinh, Hieu UL; Nguyen, van Dinh UL; Chatzinotas, Symeon UL et al

in IEEE Transactions on Wireless Communications (2021)

Unmanned aerial vehicle (UAV) communication hasemerged as a prominent technology for emergency communi-cations (e.g., natural disaster) in the Internet of Things (IoT)networks to enhance the ability of ... [more ▼]

Unmanned aerial vehicle (UAV) communication hasemerged as a prominent technology for emergency communi-cations (e.g., natural disaster) in the Internet of Things (IoT)networks to enhance the ability of disaster prediction, damageassessment, and rescue operations promptly. A UAV can bedeployed as a flying base station (BS) to collect data from time-constrained IoT devices and then transfer it to a ground gateway(GW). In general, the latency constraint at IoT devices and UAV’slimited storage capacity highly hinder practical applicationsof UAV-assisted IoT networks. In this paper, full-duplex (FD)radio is adopted at the UAV to overcome these challenges. Inaddition, half-duplex (HD) scheme for UAV-based relaying isalso considered to provide a comparative study between twomodes (viz., FD and HD). Herein, a device is considered tobe successfully served iff its data is collected by the UAV andconveyed to GW timely during flight time. In this context,we aim to maximize the number of served IoT devices byjointly optimizing bandwidth, power allocation, and the UAVtrajectory while satisfying each device’s requirement and theUAV’s limited storage capacity. The formulated optimizationproblem is troublesome to solve due to its non-convexity andcombinatorial nature. Towards appealing applications, we firstrelax binary variables into continuous ones and transform theoriginal problem into a more computationally tractable form.By leveraging inner approximation framework, we derive newlyapproximated functions for non-convex parts and then develop asimple yet efficient iterative algorithm for its solutions. Next,we attempt to maximize the total throughput subject to thenumber of served IoT devices. Finally, numerical results showthat the proposed algorithms significantly outperform benchmarkapproaches in terms of the number of served IoT devices andsystem throughput. [less ▲]

Detailed reference viewed: 76 (15 UL)
Full Text
Peer Reviewed
See detailMassive MIMO under Double Scattering Channels: Power Minimization and Congestion Controls
Van Chien, Trinh; Ngo, Hien Quoc; Chatzinotas, Symeon UL et al

in IEEE Transactions on Wireless Communications (2021)

This paper considers a massive MIMO system under the double scattering channels. We derive a closed-form expression of the uplink ergodic spectral efficiency (SE) by exploiting the maximum-ratio combining ... [more ▼]

This paper considers a massive MIMO system under the double scattering channels. We derive a closed-form expression of the uplink ergodic spectral efficiency (SE) by exploiting the maximum-ratio combining technique with imperfect channel state information. We then formulate and solve a total uplink data power optimization problem that aims at simultaneously satisfying the required SEs from all the users with limited power resources. We further propose algorithms to cope with the congestion issue appearing when at least one user is served by lower SE than requested. Numerical results illustrate the effectiveness of our proposed power optimization. More importantly, our proposed congestion-handling algorithms can guarantee the required SEs to many users under congestion, even when the SE requirement is high. [less ▲]

Detailed reference viewed: 27 (1 UL)
Full Text
Peer Reviewed
See detailOutage Probability Analysis of IRS-Assisted Systems Under Spatially Correlated Channels
Trinh, van Chien UL; K. Papazafeiropoulos, Anastasios; Tu, Lam Thanh et al

in IEEE Wireless Communications Letters (2021), 10(8), 1815-1819

This paper investigates the impact of spatial channel correlation on the outage probability of intelligent reflecting surface (IRS)-assisted single-input single-output (SISO) communication systems. In ... [more ▼]

This paper investigates the impact of spatial channel correlation on the outage probability of intelligent reflecting surface (IRS)-assisted single-input single-output (SISO) communication systems. In particular, we derive a novel closed-form expression of the outage probability for arbitrary phase shifts and correlation matrices of the indirect channels. To shed light on the impact of the spatial correlation, we further attain the closed-form expressions for two common scenarios met in the literature when the large-scale fading coefficients are expressed by the loss over a propagation distance. Numerical results validate the tightness and effectiveness of the closed-form expressions. Furthermore, the spatial correlation offers significant decreases in the outage probability as the direct channel is blocked. [less ▲]

Detailed reference viewed: 60 (4 UL)
Full Text
Peer Reviewed
See detailRadio Resource Management Techniques for Multibeam Satellite Systems
Kisseleff, Steven UL; Lagunas, Eva UL; Abdu, Tedros Salih UL et al

in IEEE Communications Letters (2021), 25(8), 2448-2452

Next–generation of satellite communication (SatCom) networks are expected to support extremely high data rates for a seamless integration into future large satellite-terrestrial networks. In view of the ... [more ▼]

Next–generation of satellite communication (SatCom) networks are expected to support extremely high data rates for a seamless integration into future large satellite-terrestrial networks. In view of the coming spectral limitations, the main challenge is to reduce the cost (satellite launch and operation) per bit, which can be achieved by enhancing the spectral efficiencies. In addition, the capability to quickly and flexibly assign radio resources according to the traffic demand distribution has become a must for future multibeam broadband satellite systems. This article presents the radio resource management problems encountered in the design of future broadband SatComs and provides a comprehensive overview of the available techniques to address such challenges. Firstly, we focus on the demand matching formulation of the power and bandwidth assignment. Secondly, we present the scheduling design in practical multibeam satellite systems. Finally, a number of future challenges and the respective open research topics are described. [less ▲]

Detailed reference viewed: 247 (80 UL)
Full Text
Peer Reviewed
See detailLEO Satellite Constellations for 5G and Beyond: How Will They Reshape Vertical Domains?
Liu, Shicong; Gao, Zhen; Wu, Yongpeng et al

in IEEE Communications Magazine (2021), 59(7), 30-36

The rapid development of communication technologies in the past decades has provided immense vertical opportunities for individuals and enterprises. However, conventional terrestrial cellular networks ... [more ▼]

The rapid development of communication technologies in the past decades has provided immense vertical opportunities for individuals and enterprises. However, conventional terrestrial cellular networks have unfortunately neglected the huge geographical digital divide, s ince high-bandwidth wireless coverage is concentrated in urban areas. To meet the goal of “connecting the unconnected,” integrating low Earth orbit (LEO) satellites with the terrestrial cellular networks has been widely considered as a promising solution. In this article, we first introduce the development roadmap of LEO sa tellite constellations (SatCons), including early attempts in LEO satellites with the emerging LEO constellations. Further, we discuss the unique opportunities of employing LEO SatCons for the delivery of integrating 5G networks. Specifically, we present their key performance indicators, which offer important guidelines for the design of associated enabling techniques, and then discuss the potential impact of integrating LEO SatCons with typical 5G use cases, where we engrave our vision of various vertical domains reshaped by LEO SatCons. Technical challenges are finally provided to specify future research directions. [less ▲]

Detailed reference viewed: 37 (4 UL)
Full Text
Peer Reviewed
See detailOn the Secrecy Capacity of MIMO Wiretap Channels: Convex Reformulation and Efficient Numerical Methods
Mukherjee, Anshu; Ottersten, Björn UL; Tran, Le-Nam

in IEEE Transactions on Communications (2021), 69(10), 6865-6878

This paper presents novel numerical approaches to finding the secrecy capacity of the multiple-input multiple-output (MIMO) wiretap channel subject to multiple linear transmit covariance constraints ... [more ▼]

This paper presents novel numerical approaches to finding the secrecy capacity of the multiple-input multiple-output (MIMO) wiretap channel subject to multiple linear transmit covariance constraints, including sum power constraint, per antenna power constraints and interference power constraint. An analytical solution to this problem is not known and existing numerical solutions suffer from slow convergence rate and/or high per-iteration complexity. Deriving computationally efficient solutions to the secrecy capacity problem is challenging since the secrecy rate is expressed as a difference of convex functions (DC) of the transmit covariance matrix, for which its convexity is only known for some special cases. In this paper we propose two low-complexity methods to compute the secrecy capacity along with a convex reformulation for degraded channels. In the first method we capitalize on the accelerated DC algorithm which requires solving a sequence of convex subproblems, for which we propose an efficient iterative algorithm where each iteration admits a closed-form solution. In the second method, we rely on the concave-convex equivalent reformulation of the secrecy capacity problem which allows us to derive the so-called partial best response algorithm to obtain an optimal solution. Notably, each iteration of the second method can also be done in closed form. The simulation results demonstrate a faster convergence rate of our methods compared to other known solutions. We carry out extensive numerical experiments to evaluate the impact of various parameters on the achieved secrecy capacity. [less ▲]

Detailed reference viewed: 26 (1 UL)
Full Text
Peer Reviewed
See detailA Cubesat-ready Phase Synchronization Digital Payload for Coherent Distributed Remote Sensing Missions
Querol, Jorge UL; Merlano Duncan, Juan Carlos UL; Martinez Marrero, Liz UL et al

Poster (2021, July 15)

Distributed antenna arrays, fractionated payloads and cooperative platforms can provide unprecedented performance in the next generation of spaceborne communications and remote sensing systems. Remote ... [more ▼]

Distributed antenna arrays, fractionated payloads and cooperative platforms can provide unprecedented performance in the next generation of spaceborne communications and remote sensing systems. Remote phase synchronization of physically separated oscillators is the first step towards a coherent operation of distributed systems. This work shows the preliminary results of a TDD remote phase synchronization algorithm with a master-follower architecture. Herein, we describe the implementation and validation of the proposed algorithm. The implementation has been conducted in a Cubesat-ready software defined radio and validated at the end-to-end satellite communications testbed available at the University of Luxembourg. [less ▲]

Detailed reference viewed: 83 (21 UL)
Full Text
Peer Reviewed
See detailHybrid Beamforming, User Scheduling, and Resource Allocation for Integrated Terrestrial-Satellite Communication
Peng, Deyi; Bandi, Ashok; Li, Yun et al

in IEEE Transactions on Vehicular Technology (2021), 70(9), 8868-8882

In this paper, we investigate hybrid beamforming, user scheduling, and resource allocation optimization based on spectrum coexisting forward transmission in integrated terrestrial-satellite network (ITSN ... [more ▼]

In this paper, we investigate hybrid beamforming, user scheduling, and resource allocation optimization based on spectrum coexisting forward transmission in integrated terrestrial-satellite network (ITSN) with the purpose of improving system sum rate and energy efficiency. Considering the limitation of on-board beamforming, a hybrid analog-digital beamforming scheme is designed under the scenario of millimeter wave (mmWave) coexisting in the ITSN framework. Besides, in order to further mitigate intra-beam and inter-beam interference, we propose an adaptive user scheduling scheme, which first determines the cluster center based on adaptive threshold, and then selects users with less channel correlation into a scheduling cluster. Moreover, we model system sum rate maximization problem that incorporates maximum power constrains and minimum data rate requirements. Combined with the aforementioned hybrid beamforming and user scheduling strategy, we formulate the sum rate maximizing problem to a pure power allocation issue. In view of the non-convexity and high complexity, we propose a feasible optimization method based on the minimum mean square error (MMSE) criterion and logarithmic linearization to optimize the power allocation for each user terminal (UT). Simulation results show that our proposed joint beamforming and resource allocation optimization scheduling scheme can achieve an attractive gain in system sum rate and energy efficiency compared with conservative beamforming and allocations. [less ▲]

Detailed reference viewed: 30 (4 UL)
Full Text
Peer Reviewed
See detailHybrid A/D Precoding for Downlink Massive MIMO in LEO Satellite Communications
Qiang, Xiaoyu; You, Li; Li, Ke-Xin et al

in 2021 IEEE International Conference on Communications Workshops (ICC Workshops) (2021, July 09)

In this paper, we develop hybrid analog/digital precoding based on the fully-connected architecture for massive multiple-input multiple-output (MIMO) low earth orbit (LEO) satellite communications (SATCOM ... [more ▼]

In this paper, we develop hybrid analog/digital precoding based on the fully-connected architecture for massive multiple-input multiple-output (MIMO) low earth orbit (LEO) satellite communications (SATCOM), by exploiting the statistical channel state information (CSI) at the transmitter. The hybrid precoder design is formulated as an energy efficiency (EE) maximization problem by considering both continuous and discrete phase shift networks for implementing the analog precoder. The resulting optimization problem is nonconvex and difficult to solve. To that end, first, we apply a closed-form tight upper bound to approximate the ergodic rate. Then, we adopt Dinkelbach's algorithm and the iteratively weighted minimum mean-square error (WMMSE) method to obtain the fully digital precoders. After that, the alternating minimization and inexact majorization-minimization (MM) algorithms are utilized to compute the hybrid precoders. Simulation results show that the proposed algorithmic solutions achieve significant performance gains when compared to existing literature ones, especially in the case where the discrete phase shift network is employed for analog precoding. [less ▲]

Detailed reference viewed: 30 (6 UL)
Full Text
Peer Reviewed
See detailMulti-Antenna Data-Driven Eavesdropping Attacks and Symbol-Level Precoding Countermeasures
Mayouche, Abderrahmane UL; Alves Martins, Wallace UL; Tsinos, Christos UL et al

Poster (2021, June 21)

In this work, we consider secure communications in wireless multi-user (MU) multiple-input single-output (MISO) systems with channel coding in the presence of a multi-antenna eavesdropper (Eve), who is a ... [more ▼]

In this work, we consider secure communications in wireless multi-user (MU) multiple-input single-output (MISO) systems with channel coding in the presence of a multi-antenna eavesdropper (Eve), who is a legit user trying to eavesdrop other users. In this setting, we exploit machine learning (ML) tools to design soft and hard decoding schemes by using precoded pilot symbols as training data. The proposed ML frameworks allow an Eve to determine the transmitted message with high accuracy. We thereby show that MU-MISO systems are vulnerable to such eavesdropping attacks even when relatively secure transmission techniques are employed, such as symbol-level precoding (SLP). To counteract this attack, we propose two novel SLP-based schemes that increase the bit-error rate at Eve by impeding the learning process. We design these two security-enhanced schemes to meet different requirements regarding runtime, security, and power consumption. Simulation results validate both the ML-based eavesdropping attacks as well as the countermeasures, and show that the gain in security is achieved without affecting the decoding performance at the intended users. [less ▲]

Detailed reference viewed: 57 (5 UL)
Full Text
Peer Reviewed
See detailEfficient Numerical Methods for Secrecy Capacity of Gaussian MIMO Wiretap Channel
Mukherjee, Anshu; Ottersten, Björn UL; Tran, Le Nam

in 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring) (2021, June 15)

This paper presents two different low-complexity methods for obtaining the secrecy capacity of multiple-input multiple-output (MIMO) wiretap channel subject to a sum power constraint (SPC). The challenges ... [more ▼]

This paper presents two different low-complexity methods for obtaining the secrecy capacity of multiple-input multiple-output (MIMO) wiretap channel subject to a sum power constraint (SPC). The challenges in deriving computationally efficient solutions to the secrecy capacity problem are due to the fact that the secrecy rate is a difference of convex functions (DC) of the transmit covariance matrix, for which its convexity is only known for the degraded case. In the first method, we capitalize on the accelerated DC algorithm, which requires solving a sequence of convex subproblems. In particular, we show that each subproblem indeed admits a water-filling solution. In the second method, based on the equivalent convex-concave reformulation of the secrecy capacity problem, we develop a so-called partial best response algorithm (PBRA). Each iteration of the PBRA is also done in closed form. Simulation results are provided to demonstrate the superior performance of the proposed methods. [less ▲]

Detailed reference viewed: 27 (2 UL)
Full Text
Peer Reviewed
See detailMassive MIMO under Double Scattering Channels: Power Minimization and Congestion Controls
Trinh, van Chien UL; Ngo, Quoc Hien; Chatzinotas, Symeon UL et al

in Massive MIMO under Double Scattering Channels: Power Minimization and Congestion Controls (2021, June 14)

This paper considers a massive MIMO system under the double scattering channels. We derive a closed-form expression of the uplink ergodic spectral efficiency (SE) by exploiting the maximum-ratio combining ... [more ▼]

This paper considers a massive MIMO system under the double scattering channels. We derive a closed-form expression of the uplink ergodic spectral efficiency (SE) by exploiting the maximum-ratio combining technique with imperfect channel state information. We then formulate and solve a total uplink data power optimization problem that aims at simultaneously satisfying the required SEs from all the users with limited power resources. We further propose algorithms to cope with the congestion issue appearing when at least one user is served by lower SE than requested. Numerical results illustrate the effectiveness of our proposed power optimization. More importantly, our proposed congestion-handling algorithms can guarantee the required SEs to many users under congestion, even when the SE requirement is high. [less ▲]

Detailed reference viewed: 81 (13 UL)
Full Text
Peer Reviewed
See detailSecure Vehicular Communications Through Reconfigurable Intelligent Surfaces
Ai, Yun; De Figueiredo, Felipe A.P; Kong, Long et al

in IEEE Transactions on Vehicular Technology (2021), 70(7), 7272-7276

Reconfigurable intelligent surfaces (RIS) is considered as a revolutionary technique to improve the wireless system performance by reconfiguring the radio wave propagation environment artificially ... [more ▼]

Reconfigurable intelligent surfaces (RIS) is considered as a revolutionary technique to improve the wireless system performance by reconfiguring the radio wave propagation environment artificially. Motivated by the potential of RIS in vehicular networks, we analyze the secrecy outage performance of RIS-aided vehicular communications in this paper. More specifically, two vehicular communication scenarios are considered, i.e., a vehicular-to-vehicular (V2V) communication where the RIS acts as a relay and a vehicular-to-infrastructure (V2I) scenario where the RIS functions as the receiver. In both scenarios, a passive eavesdropper is present attempting to retrieve the transmitted information. Closed-form expressions for the secrecy outage probability (SOP) are derived and verified. The results demonstrate the potential of improving secrecy with the aid of RIS under both V2V and V2I communications. [less ▲]

Detailed reference viewed: 25 (1 UL)
Full Text
Peer Reviewed
See detailA design strategy for phase synchronization in Precoding-enabled DVB-S2X user terminals
Martinez Marrero, Liz UL; Merlano Duncan, Juan Carlos UL; Querol, Jorge UL et al

Scientific Conference (2021, June)

This paper address the design of a phase tracking block for the DVB-S2X user terminals in a satellite precoding system. The spectral characteristics of the phase noise introduced by the oscillator, the ... [more ▼]

This paper address the design of a phase tracking block for the DVB-S2X user terminals in a satellite precoding system. The spectral characteristics of the phase noise introduced by the oscillator, the channel, and the thermal noise at the receiver are taken into account. Using the expected phase noise mask, the optimal parameters for a second-order PLL intended to track channel variations from the pilots are calculated. To validate the results a Simulink model was implemented considering the characteristics of the hardware prototype. The performance of the design was evaluated in terms of the accuracy and stability for the frame structure of superframe Format 2, as described in Annex E of DVB-S2X. [less ▲]

Detailed reference viewed: 131 (20 UL)
Full Text
Peer Reviewed
See detailEnergy Efficiency Optimization Technique for SWIPT-enabled Multi-Group Multicasting Systems with Heterogeneous Users
Gautam, Sumit UL; Chatzinotas, Symeon UL; Ottersten, Björn UL

Poster (2021, June)

We consider a multi-group (MG) multicasting (MC) system wherein a multi-antenna transmitter serves heterogeneous users capable of either information decoding (ID) or energy harvesting (EH), or both. In ... [more ▼]

We consider a multi-group (MG) multicasting (MC) system wherein a multi-antenna transmitter serves heterogeneous users capable of either information decoding (ID) or energy harvesting (EH), or both. In this context, we investigate a precoder design framework to explicitly serve the ID and EH users categorized within certain MC and EH groups. Specifically, the ID users are categorized within multiple MC groups while the EH users are a part of single (last) group. We formulate a problem to optimize the energy efficiency in the considered scenario under a quality-of-service (QoS) constraint. An algorithm based on Dinkelback method, slack-variable replacement, and second-order conic programming (SOCP)/semi-definite relaxation (SDR) is proposed to obtain a suitable solution for the above-mentioned fractional-objective dependent non-convex problem. Simulation results illustrate the benefits of proposed algorithm under several operating conditions and parameter values, while drawing a comparison between the two proposed methods. [less ▲]

Detailed reference viewed: 77 (10 UL)
Full Text
Peer Reviewed
See detailExploiting Jamming Attacks for Energy Harvesting in Massive MIMO Systems
Al-Hraishawi, Hayder UL; Chatzinotas, Symeon UL; Ottersten, Björn UL

Scientific Conference (2021, June)

In this paper, the performance of an RF energy harvesting scheme for multi-user massive multiple-input multiple-output (MIMO) is investigated in the presence of multiple active jammers. The key idea is to ... [more ▼]

In this paper, the performance of an RF energy harvesting scheme for multi-user massive multiple-input multiple-output (MIMO) is investigated in the presence of multiple active jammers. The key idea is to exploit the jamming transmissions as an energy source to be harvested at the legitimate users. To this end, the achievable uplink sum rate expressions are derived in closed-form for two different antenna configurations. An optimal time-switching policy is also proposed to ensure user-fairness in terms of both harvested energy and achievable rate. Besides, the essential trade-off between the harvested energy and achievable sum rate are quantified in closed-form. Our analysis reveals that the massive MIMO systems can make use of RF signals of the jamming attacks for boosting the amount of harvested energy at the served users. Numerical results illustrate the effectiveness of the derived closed-form expressions over Monte-Carlo simulations. [less ▲]

Detailed reference viewed: 52 (4 UL)