References of "Ottersten, Björn 50002797"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailA Novel Heap-based Pilot Assignment for Full Duplex Cell-Free Massive MIMO with Zero-Forcing
Nguyen, Van Hieu; Nguyen, van Dinh UL; Dobre, Octavia A. et al

in IEEE International Conference on Communications (2020, June 07)

This paper investigates the combined benefits of full-duplex (FD) and cell-free massive multiple-input multipleoutput (CF-mMIMO), where a large number of distributed access points (APs) having FD ... [more ▼]

This paper investigates the combined benefits of full-duplex (FD) and cell-free massive multiple-input multipleoutput (CF-mMIMO), where a large number of distributed access points (APs) having FD capability simultaneously serve numerous uplink and downlink user equipments (UEs) on the same time-frequency resources. To enable the incorporation of FD technology in CF-mMIMO systems, we propose a novel heapbased pilot assignment algorithm, which not only can mitigate the effects of pilot contamination but also reduce the involved computational complexity. Then, we formulate a robust design problem for spectral efficiency (SE) maximization in which the power control and AP-UE association are jointly optimized, resulting in a difficult mixed-integer nonconvex programming. To solve this problem, we derive a more tractable problem before developing a very simple iterative algorithm based on inner approximation method with polynomial computational complexity. Numerical results show that our proposed methods with realistic parameters significantly outperform the existing approaches in terms of the quality of channel estimate and SE. [less ▲]

Detailed reference viewed: 112 (29 UL)
Full Text
Peer Reviewed
See detailUnified Framework for Secrecy Characteristics with Mixture of Gaussian (MoG) Distribution
Kong, Long UL; Chatzinotas, Symeon UL; Ottersten, Björn UL

in IEEE Wireless Communications Letters (2020)

The mixture of Gaussian (MoG) distribution was proposed to model the wireless channels by implementing the completely unsupervised expectation-maximization (EM) learning algorithm. With the high ... [more ▼]

The mixture of Gaussian (MoG) distribution was proposed to model the wireless channels by implementing the completely unsupervised expectation-maximization (EM) learning algorithm. With the high convenience for density estimation applications, the focus of this letter is supposed to investigate the secrecy metrics, including secrecy outage probability (SOP), the lower bound of SOP, the probability of non-zero secrecy capacity (PNZ), and the average secrecy capacity (ASC) from the information-theoretic perspective. The above-mentioned metrics are derived with simple and unified closed-form expressions. The effectiveness of our obtained analytical expressions are successfully examined and compared with Monte-Carlo simulations. One can conclude that this letter provides a simple but effective closed-form secrecy analysis solution exploiting the MoG distribution. [less ▲]

Detailed reference viewed: 78 (1 UL)
Full Text
Peer Reviewed
See detailSuccessive Convex Approximation for Transmit Power Minimization in SWIPT-Multicast Systems
Gautam, Sumit UL; Lagunas, Eva UL; Kisseleff, Steven UL et al

Scientific Conference (2020, June)

We propose a novel technique for total transmit power minimization and optimal precoder design in wireless multi-group (MG) multicasting (MC) systems. The considered framework consists of three different ... [more ▼]

We propose a novel technique for total transmit power minimization and optimal precoder design in wireless multi-group (MG) multicasting (MC) systems. The considered framework consists of three different systems capable of handling heterogeneous user types viz., information decoding (ID) specific users with conventional receiver architectures, energy harvesting (EH) only users with non-linear EH module, and users with joint ID and EH capabilities having separate units for the two operations, respectively. Each user is categorized under unique group(s), which can be of MC type specifically meant for ID users, and/or an energy group consisting of EH explicit users. The joint ID and EH users are a part of the (last) EH group as well as any one of the MC groups distinctly. In this regard, we formulate an optimization problem to minimize the total transmit power with optimal precoder designs for the three aforementioned scenarios, under constraints on minimum signal-to-interference-plus-noise ratio and harvested energy by the users with respective demands. The problem may be adapted to the well-known semi-definite program, which can be typically solved via relaxation of rank-1 constraint. However, the relaxation of this constraint may in some cases lead to performance degradation, which increases with the rank of the solution obtained from the relaxed problem. Hence, we develop a novel technique motivated by the feasible-point pursuit and successive convex approximation method in order to address the rank-related issue. The benefits of the proposed method are illustrated under various operating conditions and parameter values, with comparison between the three above-mentioned scenarios. [less ▲]

Detailed reference viewed: 109 (14 UL)
Full Text
Peer Reviewed
See detailGOING DEEPER WITH NEURAL NETWORKS WITHOUT SKIP CONNECTIONS
Oyedotun, Oyebade UL; Shabayek, Abd El Rahman UL; Aouada, Djamila UL et al

in IEEE International Conference on Image Processing (ICIP 2020), Abu Dhabi, UAE, Oct 25–28, 2020 (2020, May 30)

Detailed reference viewed: 86 (5 UL)
Full Text
Peer Reviewed
See detailBoosting SWIPT via Symbol-Level Precoding
Gautam, Sumit UL; Krivochiza, Jevgenij UL; Haqiqatnejad, Alireza UL et al

Scientific Conference (2020, May 29)

In this paper, we investigate a simultaneous wireless information and power transmission (SWIPT) system, wherein a single multi-antenna transmitter serves multiple single-antenna users which employ the ... [more ▼]

In this paper, we investigate a simultaneous wireless information and power transmission (SWIPT) system, wherein a single multi-antenna transmitter serves multiple single-antenna users which employ the power-splitting (PS) receiver architecture. We formulate a Symbol-Level Precoding (SLP) based transmit power minimization problem dependent on the minimum signal-to-interference-plus-noise ratio (SINR) and energy harvesting (EH) thresholds. We solve the corresponding non-negative convex quadratic optimization problem per time frame of transmitted symbols and study the benefits of proposed design under Zero-Forcing (ZF) Precoding, Direct Demand SLP (DD-SLP), and Squared-Root Demand SLP (RD-SLP) techniques. A static PS-ratio is fixed according to the SINR and EH demands to enable the segregation of intended received signals for information decoding (ID) and EH, respectively. Numerical results show the property conservation of SINR-enhancement via SLP at the ID unit while increasing the harvested energy at each of the end-users. [less ▲]

Detailed reference viewed: 126 (14 UL)
Full Text
Peer Reviewed
See detailDeep Learning for Beam Hopping in Multibeam Satellite Systems
Lei, Lei UL; Lagunas, Eva UL; Yuan, Yaxiong UL et al

in IEEE 91st Vehicular Technology Conference (VTC2020-Spring) (2020, May)

Detailed reference viewed: 137 (27 UL)
Full Text
Peer Reviewed
See detail3D DEFORMATION SIGNATURE FOR DYNAMIC FACE RECOGNITION
Shabayek, Abd El Rahman UL; Aouada, Djamila UL; Cherenkova, Kseniya UL et al

in 45th International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2020), Barcelona 4-8 May 2020 (2020, May)

Detailed reference viewed: 46 (0 UL)
Full Text
Peer Reviewed
See detail'Faster-than-Nyquist Signaling via Spatiotemporal Symbol-Level Precoding for Multi-User MISO Redundant Transmissions
Alves Martins, Wallace UL; Spano, Danilo UL; Chatzinotas, Symeon UL et al

in International Conference on Acoustics, Speech, and Signal Processing (ICASSP-2020), Barcelona 4-8 May 2020 (2020, May)

This paper tackles the problem of both multi-user and intersymbol interference stemming from co-channel users transmitting at a faster-than-Nyquist (FTN) rate in multi-antenna downlink transmissions. We ... [more ▼]

This paper tackles the problem of both multi-user and intersymbol interference stemming from co-channel users transmitting at a faster-than-Nyquist (FTN) rate in multi-antenna downlink transmissions. We propose a framework for redundant block-based symbol-level precoders enabling the trade-off between constructive and destructive multi-user and interblock interference (IBI) effects at the single-antenna user terminals. Redundant elements are added as guard interval to handle IBI destructive effects. It is shown that, within this framework, accelerating the transmissions via FTN signaling improves the error-free spectral efficiency, up to a certain acceleration factor beyond which the transmitted information cannot be perfectly recovered by linear filtering followed by sampling. Simulation results corroborate that the proposed spatiotemporal symbol-level precoding can change the amount of added redundancy from zero (full IBI) to half (IBI-free) the equivalent channel order, so as to achieve a target balance between spectral and energy efficiencies. [less ▲]

Detailed reference viewed: 64 (4 UL)
Full Text
Peer Reviewed
See detailRobust SINR-Constrained Symbol-Level Multiuser Precoding With Imperfect Channel Knowledge
Haqiqatnejad, Alireza UL; Kayhan, Farbod UL; Ottersten, Björn UL

in IEEE Transactions on Signal Processing (2020), 68(1), 1837-1852

In this paper, we address robust design of symbol-level precoding (SLP) for the downlink of multiuser multiple-input single-output wireless channels, when imperfect channel state information (CSI) is ... [more ▼]

In this paper, we address robust design of symbol-level precoding (SLP) for the downlink of multiuser multiple-input single-output wireless channels, when imperfect channel state information (CSI) is available at the transmitter. In particular, we consider a well known model for the CSI imperfection, namely, stochastic Gaussian-distributed uncertainty. Our design objective is to minimize the total (per-symbol) transmission power subject to constructive interference (CI) constraints as well as the users’ quality-of-service requirements in terms of signal-to-interference-plus-noise ratio. Assuming stochastic channel uncertainties, we first define probabilistic CI constraints in order to achieve robustness to statistically known CSI errors. Since these probabilistic constraints are difficult to handle, we resort to their convex approximations in the form of tractable (deterministic) robust constraints. Three convex approximations are obtained based on different conservatism levels, among which one is introduced as a benchmark for comparison. We show that each of our proposed approximations is tighter than the other under specific robustness settings, while both of them always outperform the benchmark. Using the proposed CI constraints, we formulate the robust SLP optimization problem as a second-order cone program. Extensive simulation results are provided to validate our analytic discussions and to make comparisons with conventional block-level robust precoding schemes. We show that the robust design of symbol-level precoder leads to an improved performance in terms of energy efficiency at the cost of increasing the computational complexity by an order of the number of users in the large system limit, compared to its non-robust counterpart. [less ▲]

Detailed reference viewed: 85 (14 UL)
Full Text
Peer Reviewed
See detailA RAN Resource Slicing Mechanism for Multiplexing of eMBB and URLLC Services in OFDMA based 5G Wireless Networks
Korrai, Praveenkumar UL; Lagunas, Eva UL; Sharma, Shree Krishna UL et al

in IEEE Access (2020)

Enhanced mobile broadband (eMBB) and ultra-reliable and low-latency communications (URLLC) are the two main expected services in the next generation of wireless networks. Accommodation of these two ... [more ▼]

Enhanced mobile broadband (eMBB) and ultra-reliable and low-latency communications (URLLC) are the two main expected services in the next generation of wireless networks. Accommodation of these two services on the same wireless infrastructure leads to a challenging resource allocation problem due to their heterogeneous specifications. To address this problem, slicing has emerged as an architecture that enables a logical network with specific radio access functionality to each of the supported services on the same network infrastructure. The allocation of radio resources to each slice according to their requirements is a fundamental part of the network slicing that is usually executed at the radio access network (RAN). In this work, we formulate the RAN resource allocation problem as a sum-rate maximization problem subject to the orthogonality constraint (i.e., service isolation), latency-related constraint and minimum rate constraint while maintaining the reliability constraint with the incorporation of adaptive modulation and coding (AMC). However, the formulated problem is not mathematically tractable due to the presence of a step-wise function associated with the AMC and a binary assignment variable. Therefore, to solve the proposed optimization problem, first, we relax the mathematical intractability of AMC by using an approximation of the non-linear AMC achievable throughput, and next, the binary constraint is relaxed to a box constraint by using the penalized reformulation of the problem. The result of the above two-step procedure provides a close-to-optimal solution to the original optimization problem. Furthermore, to ease the complexity of the optimization-based scheduling algorithm, a low-complexity heuristic scheduling scheme is proposed for the efficient multiplexing of URLLC and eMBB services. Finally, the effectiveness of the proposed optimization and heuristic schemes is illustrated through extensive numerical simulations. [less ▲]

Detailed reference viewed: 131 (8 UL)
Full Text
Peer Reviewed
See detailStructured Compression of Deep Neural Networks with Debiased Elastic Group LASSO
Oyedotun, Oyebade UL; Aouada, Djamila UL; Ottersten, Björn UL

in IEEE 2020 Winter Conference on Applications of Computer Vision (WACV 20), Aspen, Colorado, US, March 2–5, 2020 (2020, March 01)

Detailed reference viewed: 74 (7 UL)
Full Text
Peer Reviewed
See detailHybrid Analog-Digital Transceiver Designs for Multi-User MIMO mmWave Cognitive Radio Systems
Tsinos, Christos UL; Chatzinotas, Symeon UL; Ottersten, Björn UL

in IEEE Transactions on Cognitive Communications and Networking (2020)

Detailed reference viewed: 60 (0 UL)
Full Text
Peer Reviewed
See detailFull-Duplex Enabled Mobile Edge Caching: From Distributed to Cooperative Caching
Vu, Thang Xuan UL; Chatzinotas, Symeon UL; Ottersten, Björn UL et al

in IEEE Transactions on Wireless Communications (2020)

Mobile edge caching (MEC) has received much attention as a promising technique to overcome the stringent latency and data hungry requirements in future generation wireless networks. Meanwhile, full-duplex ... [more ▼]

Mobile edge caching (MEC) has received much attention as a promising technique to overcome the stringent latency and data hungry requirements in future generation wireless networks. Meanwhile, full-duplex (FD) transmission can potentially double the spectral efficiency by allowing a node to receive and transmit in the same time/frequency block simultaneously. In this paper, we investigate the delivery time performance of full-duplex enabled MEC (FD-MEC) systems, in which the users are served by distributed edge nodes (ENs), which operate in FD mode and are equipped with a limited storage memory. Firstly, we analyse the FD-MEC with different levels of cooperation among the ENs and take into account a realistic model of self-interference cancellation. Secondly, we propose a framework to minimize the system delivery time of FD-MEC under both linear and optimal precoding designs. Thirdly, to deal with the non-convexity of the formulated problems, two iterative optimization algorithms are proposed based on the inner approximation method, whose convergence is analytically guaranteed. Finally, the effectiveness of the proposed designs are demonstrated via extensive numerical results. It is shown that the cooperative scheme mitigates inter-user and self interference significantly better than the distributed scheme at an expense of inter-EN cooperation. In addition, we show that minimum mean square error (MMSE)-based precoding design achieves the best performance-complexity trade-off, compared with the zero-forcing and optimal designs. [less ▲]

Detailed reference viewed: 59 (2 UL)
Full Text
Peer Reviewed
See detailInterference Exploitation via Symbol-Level Precoding: Overview, State-of-the-Art and Future Directions
Li, Ang; Spano, Danilo UL; Krivochiza, Jevgenij UL et al

in IEEE Communications Surveys and Tutorials (2020), 22(2), 796-839

Interference is traditionally viewed as a performance limiting factor in wireless communication systems, which is to be minimized or mitigated. Nevertheless, a recent line of work has shown that by ... [more ▼]

Interference is traditionally viewed as a performance limiting factor in wireless communication systems, which is to be minimized or mitigated. Nevertheless, a recent line of work has shown that by manipulating the interfering signals such that they add up constructively at the receiver side, known interference can be made beneficial and further improve the system performance in a variety of wireless scenarios, achieved by symbol-level precoding (SLP). This paper aims to provide a tutorial on interference exploitation techniques from the perspective of precoding design in a multi-antenna wireless communication system, by beginning with the classification of constructive interference (CI) and destructive interference (DI). The definition for CI is presented and the corresponding mathematical characterization is formulated for popular modulation types, based on which optimization-based precoding techniques are discussed. In addition, the extension of CI precoding to other application scenarios as well as for hardware efficiency is also described. Proof-of-concept testbeds are demonstrated for the potential practical implementation of CI precoding, and finally a list of open problems and practical challenges are presented to inspire and motivate further research directions in this area. [less ▲]

Detailed reference viewed: 72 (9 UL)
Full Text
Peer Reviewed
See detailFast Adaptive Reparametrization (FAR) with Application to Human Action Recognition
Ghorbel, Enjie UL; Demisse, Girum UL; Aouada, Djamila UL et al

in IEEE Signal Processing Letters (2020)

In this paper, a fast approach for curve reparametrization, called Fast Adaptive Reparamterization (FAR), is introduced. Instead of computing an optimal matching between two curves such as Dynamic Time ... [more ▼]

In this paper, a fast approach for curve reparametrization, called Fast Adaptive Reparamterization (FAR), is introduced. Instead of computing an optimal matching between two curves such as Dynamic Time Warping (DTW) and elastic distance-based approaches, our method is applied to each curve independently, leading to linear computational complexity. It is based on a simple replacement of the curve parameter by a variable invariant under specific variations of reparametrization. The choice of this variable is heuristically made according to the application of interest. In addition to being fast, the proposed reparametrization can be applied not only to curves observed in Euclidean spaces but also to feature curves living in Riemannian spaces. To validate our approach, we apply it to the scenario of human action recognition using curves living in the Riemannian product Special Euclidean space SE(3) n. The obtained results on three benchmarks for human action recognition (MSRAction3D, Florence3D, and UTKinect) show that our approach competes with state-of-the-art methods in terms of accuracy and computational cost. [less ▲]

Detailed reference viewed: 222 (3 UL)
Full Text
Peer Reviewed
See detailA Worst-Case Performance Optimization Based Design Approach to Robust Symbol-Level Precoding for Downlink MU-MIMO
Haqiqatnejad, Alireza UL; Shahbazpanahi, Shahram UL; Ottersten, Björn UL

in IEEE Global Conference on Signal and Information Processing (GlobalSIP), Ottawa 11-14 November 2019 (2020)

This paper addresses the optimization problem of symbol-level precoding (SLP) in the downlink of a multiuser multiple-input multiple-output (MU-MIMO) wireless system while the precoder's output is subject ... [more ▼]

This paper addresses the optimization problem of symbol-level precoding (SLP) in the downlink of a multiuser multiple-input multiple-output (MU-MIMO) wireless system while the precoder's output is subject to partially-known distortions. In particular, we assume a linear distortion model with bounded additive noise. The original signal-to-interference- plus-noise ratio (SINR) -constrained SLP problem minimizing the total transmit power is first reformulated as a penalized unconstrained problem, which is referred to as the relaxed robust formulation. We then adopt a worst-case design approach to protect the users' intended symbols and the targeted constructive interference with a desired level of confidence. Due to the non-convexity of the relaxed robust formulation, we propose an iterative algorithm based on the block coordinate ascent-descent method. We show through simulation results that the proposed robust design is flexible in the sense that the CI constraints can be relaxed so as to keep a desirable balance between achievable rate and power consumption. Remarkably, the new formulation yields more energy-efficient solutions for appropriate choices of the relaxation parameter, compared to the original problem. [less ▲]

Detailed reference viewed: 36 (6 UL)
Full Text
Peer Reviewed
See detailJoint Power Allocation and Access Point Selection for Cell-free Massive MIMO
Vu, Thang Xuan UL; Chatzinotas, Symeon UL; ShahbazPanahi, Shahram et al

in IEEE International Conference on Communications (2020)

Cell-free massive multiple-input multiple-output (CF-MIMO) is a promising technological enabler for fifth generation (5G) networks in which a large number of access points (APs) jointly serve the users ... [more ▼]

Cell-free massive multiple-input multiple-output (CF-MIMO) is a promising technological enabler for fifth generation (5G) networks in which a large number of access points (APs) jointly serve the users. Each AP applies conjugate beamforming to precode data, which is based only on the AP's local channel state information. However, by having the nature of a (very) large number of APs, the operation of CF-MIMO can be energy-inefficient. In this paper, we investigate the energy efficiency performance of CF-MIMO by considering a practical energy consumption model which includes both the signal transmit energy as well as the static energy consumed by hardware components. In particular, a joint power allocation and AP selection design is proposed to minimize the total energy consumption subject to given quality of service (QoS) constraints. In order to deal with the combinatorial complexity of the formulated problem, we employ norm $l_{2,1}$-based block-sparsity and successive convex optimization to leverage the AP selection process. Numerical results show significant energy savings obtained by the proposed design, compared to all-active APs scheme and the large-scale based AP selection. [less ▲]

Detailed reference viewed: 119 (6 UL)
Full Text
Peer Reviewed
See detailOnline Spatiotemporal Popularity Learning via Variational Bayes for Cooperative Caching
Mehrizi Rahmat Abadi, Sajad UL; Chaterjee, Saikat; Chatzinotas, Symeon UL et al

in IEEE Transactions on Communications (2020)

Detailed reference viewed: 73 (0 UL)
Full Text
Peer Reviewed
See detailDeepVI: A Novel Framework for Learning Deep View-Invariant Human Action Representations using a Single RGB Camera
Papadopoulos, Konstantinos UL; Ghorbel, Enjie UL; Oyedotun, Oyebade UL et al

in IEEE International Conference on Automatic Face and Gesture Recognition, Buenos Aires 18-22 May 2020 (2020)

Detailed reference viewed: 73 (14 UL)