References of "Ottersten, Björn 50002797"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailJoint Beam Hopping and Carrier Aggregation in High Throughput Multi-Beam Satellite Systems
Kibria, Mirza; Al-Hraishawi, Hayder UL; Lagunas, Eva UL et al

in IEEE Access (2022)

Beam hopping (BH) and carrier aggregation (CA) are two promising technologies for the next generation satellite communication systems to achieve several orders of magnitude increase in system capacity and ... [more ▼]

Beam hopping (BH) and carrier aggregation (CA) are two promising technologies for the next generation satellite communication systems to achieve several orders of magnitude increase in system capacity and to significantly improve the spectral efficiency. While BH allows a great flexibility in adapting the offered capacity to the heterogeneous demand, CA further enhances the user quality-of-service (QoS) by allowing it to pool resources from multiple adjacent beams. In this paper, we consider a multi-beam high throughput satellite (HTS) system that employs BH in conjunction with CA to capitalize on the mutual interplay between both techniques. Particularly, an innovative joint BH-CA scheme is proposed and analyzed in this work to utilize their individual competencies. This includes designing an efficient joint time-space beam illumination pattern for BH and multi-user aggregation strategy for CA. Through this, user-carrier assignment, transponder filling-rates, beams hopping pattern, and illumination duration are all simultaneously optimized by formulating a joint optimization problem as a multi-objective mixed integer linear programming problem (MINLP). Simulation results are provided to corroborate our analysis, demonstrate the design tradeoffs, and point out the potentials of the proposed joint BH-CA concept. Advantages of our BH-CA scheme versus the conventional BH method without employing CA are investigated and presented under the same system circumstances. [less ▲]

Detailed reference viewed: 30 (1 UL)
Full Text
Peer Reviewed
See detailAdaptive Resource Allocation for Satellite Illumination Pattern Design
Chen, Lin UL; Lagunas, Eva UL; Lei, Lei et al

in IEEE 96st Vehicular Technology Conference, London-Beijing, Sept. 2022 (2022)

Detailed reference viewed: 10 (1 UL)
See detailEnabling Technologies for Social Distancing: Fundamentals, concepts and solutions
Nguyen, Diep N.; Thai Hoang, Dinh; Vu, Thang Xuan UL et al

Book published by IET (2022)

The latest advances in several emerging technologies such as AI, blockchain, privacy-preserving algorithms used in localization and positioning systems, cloud computing and computer vision all have great ... [more ▼]

The latest advances in several emerging technologies such as AI, blockchain, privacy-preserving algorithms used in localization and positioning systems, cloud computing and computer vision all have great potential in facilitating social distancing. Benefits range from supporting people to work from home to monitoring micro- and macro- movements such as contact tracing apps using Bluetooth, tracking the movement and transportation level of a city and wireless positioning systems to help people keep a safe distance by alerting them when they are too close to each other or to avoid congestion. However, implementing such technologies in practical scenarios still faces various challenges. This book aims to lay the foundations of how these technologies could be adopted to realize and facilitate social distancing to better manage pandemics and future outbreaks. Starting with basic concepts, models and practical technology-based social distancing scenarios, the authors present enabling wireless technologies and solutions which could be widely adopted to encourage social distancing. They include symptom prediction, detection and monitoring of quarantined people and contact tracing. In the future, smart infrastructures for next-generation wireless systems should incorporate a pandemic mode in their standard architecture and design. [less ▲]

Detailed reference viewed: 12 (0 UL)
Full Text
Peer Reviewed
See detailEnergy Efficient Sparse Precoding Design for Satellite Communication System
Abdu, Tedros Salih UL; Kisseleff, Steven UL; Lagunas, Eva UL et al

Scientific Conference (2022)

Through precoding, the spectral efficiency of the system can be improved; thus, more users can benefit from 5G and beyond broadband services. However, complete precoding (using all precoding coefficients ... [more ▼]

Through precoding, the spectral efficiency of the system can be improved; thus, more users can benefit from 5G and beyond broadband services. However, complete precoding (using all precoding coefficients) may not be possible in practice due to the high signal processing complexity involved in calculating a large number of precoding coefficients and combining them with symbols for transmission. In this paper, we propose an energy-efficient sparse precoding design, where only a few precoding coefficients are used with lower power consumption depending on the demand. In this context, we formulate an optimization problem that minimizes the number of in-use precoding coefficients and the system power consumption while matching the per beam demand. This problem is nonconvex. Hence, we apply Lagrangian relaxation and successive convex approximation to convexify it. The proposed solution outperforms the benchmark scheme in power consumption and demand satisfaction with the additional advantage of sparse precoding design. [less ▲]

Detailed reference viewed: 72 (18 UL)
Full Text
See detailEnergy Harvesting from Jamming Attacks in Multi-User Massive MIMO Networks
Al-Hraishawi, Hayder UL; Abdullah, Osamah; Chatzinotas, Symeon UL et al

in IEEE Transactions on Green Communications and Networking (2022)

5G communication systems enable new functions and major performance improvements but at the cost of tougher energy requirements on mobile devices. One of the effective ways to address this issue along ... [more ▼]

5G communication systems enable new functions and major performance improvements but at the cost of tougher energy requirements on mobile devices. One of the effective ways to address this issue along with alleviating the environmental effects associated with the inevitable large increase in energy usage is the energy-neutral systems, which operate with the energy harvested from radio-frequency (RF) transmissions. In this direction, this paper investigates the notion of harvesting the ambient RF signals from an unusual source. Specifically, the performance of an RF energy harvesting scheme for multi-user massive multiple-input multiple-output (MIMO) is investigated in the presence of multiple active jammers. The key idea is to exploit the jamming transmissions as an energy source to be harvested at the legitimate users. To this end, the achievable uplink sum rate expressions are derived in closed-form for two different antenna configurations. Two optimal time-switching schemes are also proposed based on maximum sum rate and user-fairness criteria. Besides, the essential trade-off between the harvested energy and achievable sum rate are quantified in closed-form. Our analysis reveals that the massive MIMO systems can exploit the surrounding RF signals of the jamming attacks for boosting the amount of harvested energy at the served users. Finally, numerical results illustrate the effectiveness of the derived closed-form expressions through simulations. [less ▲]

Detailed reference viewed: 84 (9 UL)
Full Text
Peer Reviewed
See detailJOINT CARRIER ALLOCATION AND PRECODING OPTIMIZATION FOR INTERFERENCE-LIMITED GEO SATELLITE
Abdu, Tedros Salih UL; Kisseleff, Steven UL; Lagunas, Eva UL et al

Scientific Conference (2022)

The rise of flexible payloads on satellites opens a door for controlling satellite resources according to the user demand, user location, and satellite position. In addition to resource management ... [more ▼]

The rise of flexible payloads on satellites opens a door for controlling satellite resources according to the user demand, user location, and satellite position. In addition to resource management, applying precoding on flexible payloads is essential to obtain high spectral efficiency. However, these cannot be achieved using a conventional resource allocation algorithm that does not consider the user demand. In this paper, we propose a demand-aware algorithm based on multiobjective optimization to jointly design the carrier allocation and precoding for better spectral efficiency and demand matching with proper management of the satellite resources. The optimization problem is non-convex, and we solve it using convex relaxation and successive convex approximation. Then, we evaluate the performance of the proposed algorithm through numerical results. It is shown that the proposed method outperforms the benchmark schemes in terms of resource utilization and demand satisfaction. [less ▲]

Detailed reference viewed: 20 (0 UL)
Full Text
Peer Reviewed
See detailThe Next Generation of Beam Hopping Satellite Systems: Dynamic Beam Illumination with Selective Precoding
Chen, Lin UL; Ha, Vu Nguyen UL; Lagunas, Eva UL et al

in IEEE Transactions on Wireless Communications (2022)

Detailed reference viewed: 48 (14 UL)
Full Text
Peer Reviewed
See detailCombining Relaying and Reflective Surfaces: Power Consumption and Energy Efficiency Analysis
Abdullah, Zaid UL; Alexandropoulos, George C.; Kisseleff, Steven UL et al

in IEEE Global Communication Conference, Rio de Janeiro, Brazil (2022)

Detailed reference viewed: 28 (1 UL)
Full Text
Peer Reviewed
See detailDual-DNN Assisted Optimization for Efficient Resource Scheduling in NOMA-Enabled Satellite Systems
Wang, Anyue UL; Lei, Lei UL; Lagunas, Eva UL et al

Scientific Conference (2021, December 08)

In this paper, we apply non-orthogonal multiple access (NOMA) in satellite systems to assist data transmission for services with latency constraints. We investigate a problem to minimize the transmission ... [more ▼]

In this paper, we apply non-orthogonal multiple access (NOMA) in satellite systems to assist data transmission for services with latency constraints. We investigate a problem to minimize the transmission time by jointly optimizing power allocation and terminal-timeslot assignment for accomplishing a transmission task in NOMA-enabled satellite systems. The problem appears non-linear/non-convex with integer variables and can be equivalently reformulated in the format of mixed-integer convex programming (MICP). Conventional iterative methods may apply but at the expenses of high computational complexity in approaching the optimum or near-optimum. We propose a combined learning and optimization scheme to tackle the problem, where the primal MICP is decomposed into two learning-suited classification tasks and a power allocation problem. In the proposed scheme, the first learning task is to predict the integer variables while the second task is to guarantee the feasibility of the solutions. Numerical results show that the proposed algorithm outperforms benchmarks in terms of average computational time, transmission time performance, and feasibility guarantee. [less ▲]

Detailed reference viewed: 219 (98 UL)
Full Text
Peer Reviewed
See detailA family of deep learning architectures for channel estimation and hybrid beamforming in multi-carrier mm-wave massive MIMO.
Elbir, Ahmet M.; Mishra, Kumar Vijay; Mysore Rama Rao, Bhavani Shankar UL et al

in IEEE Transactions on Cognitive Communications and Networking (2021)

Hybrid analog and digital beamforming transceivers are instrumental in addressing the challenge of expensive hardware and high training overheads in the next generation millimeter-wave (mm-Wave) massive ... [more ▼]

Hybrid analog and digital beamforming transceivers are instrumental in addressing the challenge of expensive hardware and high training overheads in the next generation millimeter-wave (mm-Wave) massive MIMO (multiple-input multiple-output) systems. However, lack of fully digital beamforming in hybrid architectures and short coherence times at mm-Wave impose additional constraints on the channel estimation. Prior works on addressing these challenges have focused largely on narrowband channels wherein optimization-based or greedy algorithms were employed to derive hybrid beamformers. In this paper, we introduce a deep learning (DL) approach for channel estimation and hybrid beamforming for frequency-selective, wideband mm-Wave systems. In particular, we consider a massive MIMO Orthogonal Frequency Division Multiplexing (MIMO-OFDM) system and propose three different DL frameworks comprising convolutional neural networks (CNNs), which accept the raw data of received signal as input and yield channel estimates and the hybrid beamformers at the output. We also introduce both offline and online prediction schemes. Numerical experiments demonstrate that, compared to the current state-of-the-art optimization and DL methods, our approach provides higher spectral efficiency, lesser computational cost and fewer number of pilot signals, and higher tolerance against the deviations in the received pilot data, corrupted channel matrix, and propagation environment. [less ▲]

Detailed reference viewed: 65 (5 UL)
Full Text
Peer Reviewed
See detailAn overview of generic tools for information-theoretic secrecy performance analysis over wiretap fading channels
Kong, Long UL; Ai, Yun; Lei, Lei UL et al

in EURASIP Journal on Wireless Communications and Networking volume (2021), (1), 194

Physical layer security (PLS) has been proposed to afford an extra layer of security on top of the conventional cryptographic techniques. Unlike the conventional complexity-based cryptographic techniques ... [more ▼]

Physical layer security (PLS) has been proposed to afford an extra layer of security on top of the conventional cryptographic techniques. Unlike the conventional complexity-based cryptographic techniques at the upper layers, physical layer security exploits the characteristics of wireless channels, e.g., fading, noise, interference, etc., to enhance wireless security. It is proved that secure transmission can benefit from fading channels. Accordingly, numerous researchers have explored what fading can offer for physical layer security, especially the investigation of physical layer security over wiretap fading channels. Therefore, this paper aims at reviewing the existing and ongoing research works on this topic. More specifically, we present a classification of research works in terms of the four categories of fading models: (i) small-scale, (ii) large-scale, (iii) composite, and (iv) cascaded. To elaborate these fading models with a generic and flexible tool, three promising candidates, including the mixture gamma (MG), mixture of Gaussian (MoG), and Fox’s H-function distributions, are comprehensively examined and compared. Their advantages and limitations are further demonstrated via security performance metrics, which are designed as vivid indicators to measure how perfect secrecy is ensured. Two clusters of secrecy metrics, namely (i) secrecy outage probability (SOP), and the lower bound of SOP; and (ii) the probability of nonzero secrecy capacity (PNZ), the intercept probability, average secrecy capacity (ASC), and ergodic secrecy capacity, are displayed and, respectively, deployed in passive and active eavesdropping scenarios. Apart from those, revisiting the secrecy enhancement techniques based on Wyner’s wiretap model, the on-off transmission scheme, jamming approach, antenna selection, and security region are discussed. [less ▲]

Detailed reference viewed: 36 (2 UL)
Full Text
Peer Reviewed
See detailOn the Optimality of the Stationary Solution of Secrecy Rate Maximization for MIMO Wiretap Channel
Mukherjee, Anshu; Kumar, Vaibhav; Jorswieck, Eduard et al

in IEEE Wireless Communications Letters (2021)

To achieve perfect secrecy in a multiple-input multiple-output (MIMO) Gaussian wiretap channel (WTC), we need to find its secrecy capacity and optimal signaling, which involves solving a difference of ... [more ▼]

To achieve perfect secrecy in a multiple-input multiple-output (MIMO) Gaussian wiretap channel (WTC), we need to find its secrecy capacity and optimal signaling, which involves solving a difference of convex functions program known to be non-convex for the non-degraded case. To deal with this, a class of existing solutions have been developed but only local optimality is guaranteed by standard convergence analysis. Interestingly, our extensive numerical experiments have shown that these local optimization methods indeed achieve global optimality. In this paper, we provide an analytical proof for this observation. To achieve this, we show that the Karush-Kuhn-Tucker (KKT) conditions of the secrecy rate maximization problem admit a unique solution for both degraded and non-degraded cases. Motivated by this, we also propose a low-complexity algorithm to find a stationary point. Numerical results are presented to verify the theoretical analysis. [less ▲]

Detailed reference viewed: 26 (0 UL)
Full Text
See detailSolar-Aerodynamic Formation Flight for 5G Experiments
Thoemel, Jan UL; Querol, Jorge UL; Bokal, Zhanna UL et al

in Proceedings of the 12th European CubeSatSymposium (2021, November 15)

Detailed reference viewed: 99 (24 UL)
Full Text
Peer Reviewed
See detailHeterogeneously-Distributed Joint Radar Communications: Bayesian Resource Allocation
Wu, Linlong; Mishra, Kumar Vijay; Mysore Rama Rao, Bhavani Shankar UL et al

in 2021 IEEE 22nd International Workshop on Signal Processing Advances in Wireless Communications (SPAWC) (2021, November 15)

Due to spectrum scarcity, the coexistence of radar and wireless communication has gained substantial research interest recently. Among many scenarios, the heterogeneously-distributed joint radar ... [more ▼]

Due to spectrum scarcity, the coexistence of radar and wireless communication has gained substantial research interest recently. Among many scenarios, the heterogeneously-distributed joint radar-communication system is promising due to its flexibility and compatibility of existing architectures. In this paper, we focus on a heterogeneous radar and communication network (HRCN), which consists of various generic radars for multiple target tracking (MTT) and wireless communications for multiple users. We aim to improve the MTT performance and maintain good throughput levels for communication users by a well-designed resource allocation. The problem is formulated as a Bayesian Cramér-Rao bound (CRB) based minimization subjecting to resource budgets and throughput constraints. The formulated nonconvex problem is solved based on an alternating descent-ascent approach. Numerical results demonstrate the efficacy of the proposed allocation scheme for this heterogeneous network. [less ▲]

Detailed reference viewed: 43 (10 UL)
Full Text
Peer Reviewed
See detailDownlink Transmit Design in Massive MIMO LEO Satellite Communications
Li, Ke-Xin; You, Li; Want, Jiaheng et al

in IEEE Transactions on Communications (2021)

Low earth orbit (LEO) satellite communication systems have attracted extensive attention due to their smaller pathloss, shorter round-trip delay and lower launch cost compared with geostationary ... [more ▼]

Low earth orbit (LEO) satellite communication systems have attracted extensive attention due to their smaller pathloss, shorter round-trip delay and lower launch cost compared with geostationary counterparts. In this paper, the downlink transmit design for massive multiple-input multiple-output (MIMO) LEO satellite communications is investigated. First, we establish the massive MIMO LEO satellite channel model where the satellite and user terminals (UTs) are both equipped with the uniform planar arrays. Then, the rank of transmit covariance matrix of each UT is shown to be no larger than one to maximize ergodic sum rate, which reveals the optimality of single-stream precoding for each UT. The minorization-maximization algorithm is used to compute the precoding vectors. To reduce the computation complexity, an upper bound of ergodic sum rate is resorted to produce a simplified transmit design, where the rank of optimal transmit covariance matrix of each UT is also shown to not exceed one. To tackle the simplified precoder design, we derive the structure of precoding vectors, and formulate a Lagrange multiplier optimization (LMO) problem building on the structure. Then, a low-complexity algorithm is devised to solve the LMO, which takes much less computation effort. Simulation results verify the performance of proposed approaches. [less ▲]

Detailed reference viewed: 62 (10 UL)
Full Text
Peer Reviewed
See detailThroughput Enhancement in FD- and SWIPT-enabled IoT Networks over Non-Identical Rayleigh Fading Channel
Nguyen, Nhat Tan; Tran Dinh, Hieu UL; Chatzinotas, Symeon UL et al

in IEEE Internet of Things Journal (2021)

Simultaneous wireless information and power transfer (SWIPT) and full-duplex (FD) communications have emerged as prominent technologies in overcoming the limited energy resources in Internet-of-Things ... [more ▼]

Simultaneous wireless information and power transfer (SWIPT) and full-duplex (FD) communications have emerged as prominent technologies in overcoming the limited energy resources in Internet-of-Things (IoT) networks and improving their spectral efficiency (SE). The article investigates the outage and throughput performance for a decode-and-forward (DF) relay SWIPT system, which consists of one source, multiple relays, and one destination. The relay nodes in this system can harvest energy from the source’s signal and operate in FD mode. A suboptimal, low-complexity, yet efficient relay selection scheme is also proposed. Specifically, a single relay is selected to convey information from a source to a destination so that it achieves the best channel from the source to the relays. An analysis of outage probability (OP) and throughput performed on two relaying strategies, termed static power splitting-based relaying (SPSR) and optimal dynamic power splitting-based relaying (ODPSR), is presented. Notably, we considered independent and non-identically distributed (i.n.i.d.) Rayleigh fading channels, which pose new challenges in obtaining analytical expressions. In this context, we derived exact closed-form expressions of the OP and throughput of both SPSR and ODPSR schemes. We also obtained the optimal power splitting ratio of ODPSR for maximizing the achievable capacity at the destination. Finally, we present extensive numerical and simulation results to confirm our analytical findings. Both simulation and analytical results show the superiority of ODPSR over SPSR. [less ▲]

Detailed reference viewed: 42 (2 UL)
Full Text
Peer Reviewed
See detailExperimental Comparison of RF Waveform Designs for Wireless Power Transmission
Gautam, Sumit; Kumar, Sumit UL; Chatzinotas, Symeon UL et al

in Experimental Comparison of RF Waveform Designs for Wireless Power Transmission (2021, October)

The possibility to harvest energy from ambient radio-frequency (RF) sources has intrigued humankind for the past several decades. In this context, there has been a tremendously growing research interest ... [more ▼]

The possibility to harvest energy from ambient radio-frequency (RF) sources has intrigued humankind for the past several decades. In this context, there has been a tremendously growing research interest in the field of wireless power transfer (WPT) using the RF range of the electromagnetic (EM) spectrum. In this paper, we experimentally investigate the aspect of real-time energy harvesting (EH) via different types of waveform designs such as orthogonal frequency division multiplexing (OFDM), square, triangular, sinusoidal, and sawtooth. We make use of a Software Defined Radio (SDR) and a Powercast P21XXCSR-EVB EH module to carry out the experiments on the practical device to assess performance. Specifically, we are interested in obtaining insights based on the comparison between the aforementioned waveform designs from the perspectives of the separation distance between the USRP and P21XXCSR-EVB EH module, and power emission via USRP. In this vein, some additional experiments are subsequently performed after a suitable candidate waveform has been reported. The demonstration of the EH is provided in terms of the abovementioned investigation metrics while seeking the best waveform to support WPT. [less ▲]

Detailed reference viewed: 55 (12 UL)
Full Text
Peer Reviewed
See detailExperimental evaluation of RF waveform designs for Wireless Power Transfer using Software Defined Radio
Gautam, Sumit UL; Kumar, Sumit UL; Chatzinotas, Symeon UL et al

in IEEE Access (2021), 9

The possibility to harvest energy from ambient radio-frequency (RF) sources has intrigued humankind for the past several decades. In this context, there has been a tremendously growing research interest ... [more ▼]

The possibility to harvest energy from ambient radio-frequency (RF) sources has intrigued humankind for the past several decades. In this context, there has been a tremendously growing research interest in the field of wireless power transfer (WPT) using the RF range of the electromagnetic (EM) spectrum. In this paper, we experimentally investigate the aspect of real-time energy harvesting (EH) via different types of waveform designs such as orthogonal frequency division multiplexing (OFDM), square, triangular, sinusoidal, and sawtooth. We make use of a Software Defined Radio (SDR) and a Powercast P21XXCSR-EVB EH module to carry out the experiments on a practical device to assess performance. Specifically, we are interested in obtaining some insights based on the comparison between the aforementioned waveform designs from the perspectives of the separation distance between the USRP and P21XXCSR-EVB EH module, and power emission via USRP. In this vein, we perform additional subsequent experiments after reporting the practical effectiveness of the OFDM waveform, which also follows our intuitive analysis. Correspondingly, we study the effect on WPT with variable USRP transmit power, the separation distance between the USRP and EH antennas, number of OFDM sub-carriers, and multipath setting. As an application of OFDM, the effectiveness of fifth generation-new radio (5G-NR) and long-term evolution (LTE) waveforms are also tested for the WPT mechanism. The demonstration of the EH is provided in terms of the above-mentioned investigation metrics while seeking the best waveform to support WPT. [less ▲]

Detailed reference viewed: 96 (9 UL)
Full Text
Peer Reviewed
See detailFinite-Alphabet Symbol-Level Multiuser Precoding for Massive MU-MIMO Downlink
Haqiqatnejad, Alireza UL; Kayhan, Farbod; Shahram, ShahbazPanahi et al

in IEEE Transactions on Signal Processing (2021), 69

We propose a finite-alphabet symbol-level precoding technique for massive multiuser multiple-input multiple-output (MU-MIMO) downlink systems which are equipped with finite-resolution digital-to-analog ... [more ▼]

We propose a finite-alphabet symbol-level precoding technique for massive multiuser multiple-input multiple-output (MU-MIMO) downlink systems which are equipped with finite-resolution digital-to-analog converters (DACs) of any precision. Using the idea of constructive interference (CI), we adopt a max-min fair design criterion which aims to maximize the minimum instantaneous received signal-to-noise ratio (SNR) among the user equipments (UEs) while ensuring a CI constraint for each UE under the restriction that the output of the precoder is a vector with finite-alphabet discrete elements. Due to this latter constraint, the design problem is an NP-hard quadratic program with discrete variables, and hence, is difficult to solve. In this paper, we tackle this difficulty by reformulating the problem in several steps into an equivalent continuous-domain biconvex form, including equivalent representations for discrete and binary constraints. Our final biconvex reformulation is obtained via an exact penalty approach and can efficiently be solved using a standard cyclic block coordinate descent algorithm. We evaluate the performance of the proposed finite-alphabet precoding design for DACs with different resolutions, where it is shown that employing low-resolution DACs can lead to higher power efficiencies. In particular, we focus on a setup with one-bit DACs and show through simulation results that compared to the existing schemes, the proposed design can achieve SNR gains of up to 2 dB. We further provide analytic and numerical analyses of complexity and show that our proposed algorithm is computationally efficient as it typically needs only a few tens of iterations to converge. [less ▲]

Detailed reference viewed: 39 (2 UL)
Full Text
Peer Reviewed
See detailJoint Transmit Waveform and Receive Filter Design for Dual-Function Radar-Communication Systems
Tsinos, Christos UL; Arora, Aakash UL; Chatzinotas, Symeon UL et al

in IEEE Journal of Selected Topics in Signal Processing (2021), 15(6), 1378-1392

In this paper, the problem of joint transmit waveform and receive filter design for dual-function radar-communication (DFRC) systems is studied. The considered system model involves a multiple antenna ... [more ▼]

In this paper, the problem of joint transmit waveform and receive filter design for dual-function radar-communication (DFRC) systems is studied. The considered system model involves a multiple antenna base station (BS) of a cellular system serving multiple single antenna users on the downlink. Furthermore, the BS simultaneously introduces sensing capabilities in the form of point-like target detection from the reflected return signals in a signal-dependent interference environment. A novel framework based on constrained optimization problems is proposed for the joint design of the transmit waveform and the radar receive filter such that different constraints related to the power amplifiers and the radar waveform are satisfied. In contrast to the existing approaches in the DFRC systems’ literature, the proposed approach does not require the knowledge of a predetermined radar beampattern in order to optimize the performance of the radar part through its approximation. Instead, a beampattern is generated by maximizing the radar receive signal-to-interference ratio (SINR) thus, enabling a more flexible design. Moreover, the radar receive filter processing and its optimization is considered for the first time on DFRC systems, enabling the effective exploitation of the available degrees of freedom in the radar receive array. Efficient algorithmic solutions with guaranteed convergence are developed for the defined constrained nonconvex optimization problems. The effectiveness of the proposed solutions is verified via numerical results. [less ▲]

Detailed reference viewed: 41 (5 UL)