References of "Ottersten, Björn 50002797"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailConstrained bayesian active learning of linear classifier
Tsakmalis, Anestis UL; Chatzinotas, Symeon UL; Ottersten, Björn UL

in 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2018)

In this paper, an on-line interactive method is proposed for learning a linear classifier. This problem is studied within the Active Learning (AL) framework where the learning algorithm sequentially ... [more ▼]

In this paper, an on-line interactive method is proposed for learning a linear classifier. This problem is studied within the Active Learning (AL) framework where the learning algorithm sequentially chooses unlabelled training samples and requests their class labels from an oracle in order to learn the classifier with the least queries to the oracle possible. Additionally' a constraint is introduced into this interactive learning process which limits the percentage of the samples from one “unwanted” class under a certain threshold. An optimal AL solution is derived and implemented with a sophisticated, accurate and fast Bayesian Learning method, the Expectation Propagation (EP) and its performance is demonstrated through numerical simulations. [less ▲]

Detailed reference viewed: 77 (3 UL)
Full Text
Peer Reviewed
See detailEnergy-Efficient Multicell Multigroup Multicasting With Joint Beamforming and Antenna Selection
Tervo, Oskari; Tran, Le-Nam; Pennanen, Harri et al

in IEEE Transactions on Signal Processing (2018)

Detailed reference viewed: 65 (4 UL)
Full Text
Peer Reviewed
See detailSDR Implementation of a Testbed for Real-Time Interference Detection with Signal Cancellation
Politis, Christos; Maleki, Sina UL; Merlano Duncan, Juan Carlos UL et al

in IEEE Access (2018)

Interference greatly affects the quality of service of wireless and satellite communications, having also a financial impact for the telecommunication operators. Therefore, as the interfering events ... [more ▼]

Interference greatly affects the quality of service of wireless and satellite communications, having also a financial impact for the telecommunication operators. Therefore, as the interfering events increase due to the deployment of new services, there is an increasing demand for the detection and mitigation of interference. There are several interference detectors in the literature, evaluated by using extensive simulations. However, this paper goes one step further, designing, implementing and evaluating the performance of the developed interference detection algorithms experimentally using a software defined radio, and particularly the universal software radio peripheral platform. A realistic communication system is implemented, consisting of a transmitter, a channel emulator and a receiver. Based on this system, we implement all the appropriate communications features such as pulse shaping, synchronization and demodulation. The real-time system implementation is validated and evaluated through signal and interference detection. We observe that the interference detection threshold is critical to the functioning of the system. Several existing interference detection techniques fail in practice due to this fact. In this paper, we propose a robust and practically implementable method the selection of threshold. Finally, we present real-time experimental results for the probabilities of false alarm and detection in order to verify the accuracy of our study and reinforce our theoretical analysis. [less ▲]

Detailed reference viewed: 155 (21 UL)
Full Text
Peer Reviewed
See detailDynamic Spectrum Sharing in 5G Wireless Networks With Full-Duplex Technology: Recent Advances and Research Challenges
Sharma, Shree Krishna UL; Bogale, Tadilo Endeshaw; le, Long Bao et al

in IEEE Communications Surveys and Tutorials (2018), 20(1), 674-707

Full-duplex (FD) wireless technology enables a radio to transmit and receive on the same frequency band at the same time, and it is considered to be one of the candidate technologies for the fifth ... [more ▼]

Full-duplex (FD) wireless technology enables a radio to transmit and receive on the same frequency band at the same time, and it is considered to be one of the candidate technologies for the fifth generation (5G) and beyond wireless communication systems due to its advantages, including potential doubling of the capacity and increased spectrum utilization efficiency. However, one of the main challenges of FD technology is the mitigation of strong self-interference (SI). Recent advances in different SI cancellation techniques, such as antenna cancellation, analog cancellation, and digital cancellation methods, have led to the feasibility of using FD technology in different wireless applications. Among potential applications, one important application area is dynamic spectrum sharing (DSS) in wireless systems particularly 5G networks, where FD can provide several benefits and possibilities such as concurrent sensing and transmission (CST), concurrent transmission and reception, improved sensing efficiency and secondary throughput, and the mitigation of the hidden terminal problem. In this direction, first, starting with a detailed overview of FD-enabled DSS, we provide a comprehensive survey of recent advances in this domain. We then highlight several potential techniques for enabling FD operation in DSS wireless systems. Subsequently, we propose a novel communication framework to enable CST in DSS systems by employing a power control-based SI mitigation scheme and carry out the throughput performance analysis of this proposed framework. Finally, we discuss some open research issues and future directions with the objective of stimulating future research efforts in the emerging FD-enabled DSS wireless systems. [less ▲]

Detailed reference viewed: 85 (3 UL)
Full Text
Peer Reviewed
See detailSequential spatio-temporal symbol-level precoding enabling faster-than-Nyquist signaling for multi-user MISO systems
Spano, Danilo UL; Chatzinotas, Symeon UL; Ottersten, Björn UL

in 2018 26th European Signal Processing Conference (EUSIPCO) (2018)

This paper addresses the problem of the interference between multiple co-channel transmissions in the downlink of a multi-antenna wireless system. In this context, symbol-level precoding achieves a ... [more ▼]

This paper addresses the problem of the interference between multiple co-channel transmissions in the downlink of a multi-antenna wireless system. In this context, symbol-level precoding achieves a constructive interference effect which results in SINR gains at the receivers side. Usually the constructive interference is exploited in the spatial dimension (multi-user interference), however in this work we consider a spatio-temporal precoding model which allows to exploit the interference also in the temporal dimension (inter-symbol interference). The proposed method, which optimizes the overs ampled transmit waveforms by minimizing the per-antenna transmit power, allows faster-than-Nyquist signaling over multi-user MISO systems without imposing additional complexity at the user terminals. The optimization is performed in a sequential fashion, by splitting the data streams in blocks and handling the inter-block interference. Numerical results are presented to assess the gains of the scheme in terms of effective rate and energy efficiency. [less ▲]

Detailed reference viewed: 26 (5 UL)
Full Text
Peer Reviewed
See detailOn-Board Precoding in a Multiple Gateway Multibeam Satellite System
Joroughi, Vahid UL; Shankar, Bhavani UL; Maleki, Sina UL et al

in Proceedings of IEEE VTC Fall 2018 (2018)

This paper present On-Board Precoding (OBP) for a multiple gateway multibeam satellite system where full frequency reuse pattern is employed at both user and feeder links. By reducing the Channel State ... [more ▼]

This paper present On-Board Precoding (OBP) for a multiple gateway multibeam satellite system where full frequency reuse pattern is employed at both user and feeder links. By reducing the Channel State Information (CSI) roundtrip delay to half, OBP offers significant benefits in the emerging multiple gateway scenario in terms of lower gateways coordination. However, two critical issues need to be addressed: (a) interference in both user and feeder links is the bottleneck of the whole system and employing interference mitigation techniques is essential, (b) clear push towards non-adaptive (fixed) payload implementation, leading to low computationally complex satellite architectures. In order to fulfill requirements (a) and (b), this paper studies the impact of employing a fixed OBP technique at the payload which is sufficiently robust to the variations in both user and feeder link channels. In addition to (a) and (b), the provided simulation results depict the performance gain obtained by our proposed OBP with respect to the conventional interference mitigation techniques in multiple gateway multibeam systems. [less ▲]

Detailed reference viewed: 97 (9 UL)
Full Text
Peer Reviewed
See detailHybrid analog-digital transceiver designs for mmwave amplify-and-forward relaying systems
Tsinos, Christos UL; Chatzinotas, Symeon UL; Ottersten, Björn UL

in 2018 41st International Conference on Telecommunications and Signal Processing (TSP) (2018)

Hybrid Analog/Digital (A/D) pre-/post-coding solutions aim at the reduction of the hardware complexity and power consumption of a system employed with a large-scale antenna array functioning in the ... [more ▼]

Hybrid Analog/Digital (A/D) pre-/post-coding solutions aim at the reduction of the hardware complexity and power consumption of a system employed with a large-scale antenna array functioning in the millimeter (mmWave) band. This is achieved by enabling the transceiver design with fewer Radio Frequency (RF) chains than antennas. In this work, hybrid A/D transceiver designs are developed for a relay assisted mmWave system that aims at data transmission from a source to a destination node via the well-known amplify-and-forward cooperative protocol. To that end, hybrid solutions are proposed for the joint design of the source and relay nodes precoders and for the destination ones, as well. Contrariwise to existing literature approaches that develop codebook-based solutions and exhibit limitations on the performance, the proposed approaches are codebook-free and present significantly improved spectral efficiency, as it is verified via the presented simulations. [less ▲]

Detailed reference viewed: 58 (2 UL)
Full Text
Peer Reviewed
See detailBinary Sequences set with small ISL for MIMO radar systems
Alaee-Kerahroodi, Mohammad; Modarres-Hashemi, Mahmoud; Naghsh, Mohammad Mahdi Naghsh et al

in 2018 26th European Signal Processing Conference (EUSIPCO) (2018)

In this paper, we aim at designing a set of binary sequences with good aperiodic auto- and crosscorrelation properties for Multiple-Input-Multiple-Output (MIMO) radar systems. We show such a set of ... [more ▼]

In this paper, we aim at designing a set of binary sequences with good aperiodic auto- and crosscorrelation properties for Multiple-Input-Multiple-Output (MIMO) radar systems. We show such a set of sequences can be obtained by minimizing the Integrated Side Lobe (ISL) with the binary requirement imposed as a design constraint. By using the block coordinate descent (BCD) framework, we propose an efficient monotonic algorithm based on Fast Fourier Transform (FFT), to minimize the objective function which is non-convex and NP-hard in general. Simulation results illustrate that the ISL of designed binary set of sequences is the neighborhood of the Welch bound, Indicating its superior performance. [less ▲]

Detailed reference viewed: 81 (4 UL)
Full Text
Peer Reviewed
See detailGraph Similarity based on Graph Fourier Distances
Lagunas, Eva UL; Marques, Antonio G.; Chatzinotas, Symeon UL et al

in European Signal Processing Conference (EUSIPCO), Rome, Italy, 3-7 September 2018 (2018)

Detailed reference viewed: 94 (4 UL)
Full Text
Peer Reviewed
See detailUser Selection for symbol-level multigroup multicasting precoding in the downlink of MISO channels
Alodeh, Maha UL; Chatzinotas, Symeon UL; Ottersten, Björn UL

in 2018 IEEE International Conference on Communications (ICC) (2018)

We consider the problem of user selection for symbol-level multigroup multicasting in the downlink of multiuser MISO systems. Symbol-level precoding is a new paradigm for multiuser multiple-antenna ... [more ▼]

We consider the problem of user selection for symbol-level multigroup multicasting in the downlink of multiuser MISO systems. Symbol-level precoding is a new paradigm for multiuser multiple-antenna downlink systems which aims at creating constructive interference among the simultaneous data streams. This can be enabled by designing the precoded signal of the multiantenna transmitter on a symbol level, taking into account both channel state information and data symbols. This work proposes a user selection algorithm to facilitate serving multiple groups of users, by transmitting a stream of common symbols to each group on symbol-by-symbol basis if we have large number of users. We provide numerical results to validate the proposed algorithm. [less ▲]

Detailed reference viewed: 74 (11 UL)
Full Text
Peer Reviewed
See detailEnergy-Efficient and Secure Resource Allocation for Multiple-Antenna NOMA with Wireless Power Transfer
Chang, Zheng; Lei, Lei UL; Zhang, Huaqing et al

in IEEE Transactions on Green Communications and Networking (2018)

Detailed reference viewed: 109 (13 UL)
Full Text
Peer Reviewed
See detailConstrained Bayesian Active Learning of Interference Channels in Cognitive Radio Networks
Tsakmalis, Anestis UL; Chatzinotas, Symeon UL; Ottersten, Björn UL

in IEEE Journal of Selected Topics in Signal Processing (2017)

In this paper, a sequential probing method for interference constraint learning is proposed to allow a centralized Cognitive Radio Network (CRN) accessing the frequency band of a Primary User (PU) in an ... [more ▼]

In this paper, a sequential probing method for interference constraint learning is proposed to allow a centralized Cognitive Radio Network (CRN) accessing the frequency band of a Primary User (PU) in an underlay cognitive scenario with a designed PU protection specification. The main idea is that the CRN probes the PU and subsequently eavesdrops the reverse PU link to acquire the binary ACK/NACK packet. This feedback indicates whether the probing-induced interference is harmful or not and can be used to learn the PU interference constraint. The cognitive part of this sequential probing process is the selection of the power levels of the Secondary Users (SUs) which aims to learn the PU interference constraint with a minimum number of probing attempts while setting a limit on the number of harmful probing-induced interference events or equivalently of NACK packet observations over a time window. This constrained design problem is studied within the Active Learning (AL) framework and an optimal solution is derived and implemented with a sophisticated, accurate and fast Bayesian Learning method, the Expectation Propagation (EP). The performance of this solution is also demonstrated through numerical simulations and compared with modified versions of AL techniques we developed in earlier work. [less ▲]

Detailed reference viewed: 130 (20 UL)
Full Text
Peer Reviewed
See detailA Framework for Optimizing Multi-cell NOMA: Delivering Demand with Less Resource
You, Lei; Lei, Lei UL; Yuan, Di et al

in 2017 IEEE Global Communications Conference (GLOBECOM) (2017, December)

Non-orthogonal multiple access (NOMA) allows multiple users to simultaneously access the same time-frequency resource by using superposition coding and successive interference cancellation (SIC). Thus far ... [more ▼]

Non-orthogonal multiple access (NOMA) allows multiple users to simultaneously access the same time-frequency resource by using superposition coding and successive interference cancellation (SIC). Thus far, most papers on NOMA have focused on performance gain for one or sometimes two base stations. In this paper, we study multi-cell NOMA and provide a general framework for user clustering and power allocation, taking into account inter-cell interference, for optimizing resource allocation of NOMA in multi-cell networks of arbitrary topology. We provide a series of theoretical analysis, to algorithmically enable optimization approaches. The resulting algorithmic notion is very general. Namely, we prove that for any performance metric that monotonically increases in the cells’ resource consumption, we have convergence guarantee for global optimum. We apply the framework with its algorithmic concept to a multi-cell scenario to demonstrate the gain of NOMA in achieving significantly higher efficiency. [less ▲]

Detailed reference viewed: 176 (18 UL)
Full Text
Peer Reviewed
See detailSymbol-level Precoding for the Non-linear Multiuser MISO Downlink Channel
Spano, Danilo UL; Alodeh, Maha; Chatzinotas, Symeon UL et al

in IEEE Transactions on Signal Processing (2017)

This paper investigates the problem of the interference among multiple simultaneous transmissions in the downlink channel of a multi-antenna wireless system. A symbol-level precoding scheme is considered ... [more ▼]

This paper investigates the problem of the interference among multiple simultaneous transmissions in the downlink channel of a multi-antenna wireless system. A symbol-level precoding scheme is considered, in order to exploit the multi-user interference and transform it into useful power at the receiver side, through a joint utilization of the data information and the channel state information. In this context, this paper presents novel strategies which exploit the potential of symbol-level precoding to control the per-antenna instantaneous transmit power. In particular, the power peaks amongst the transmitting antennas and the instantaneous power imbalances across the different transmitted streams are minimized. These objectives are particularly relevant with respect to the non-linear amplitude and phase distortions induced by the per-antenna amplifiers, which are important sources of performance degradation in practical systems. More specifically, this work proposes two different symbol-level precoding approaches. A first approach performs a weighted per-antenna power minimization, under Quality-of-Service constraints and under a lower bound constraint on the per-antenna transmit power. A second strategy performs a minimization of the spatial peak-to-average power ratio, evaluated amongst the transmitting antennas. Numerical results are presented in a comparative fashion to show the effectiveness of the proposed techniques, which outperform the state of the art symbol-level precoding schemes in terms of spatial peak-to-average power ratio, spatial dynamic range, and symbol-error-rate over non-linear channels. [less ▲]

Detailed reference viewed: 158 (15 UL)
Full Text
Peer Reviewed
See detailCache-Assisted Hybrid Satellite-Terrestrial Backhauling for 5G Cellular Networks
Kalantari, Ashkan; Fittipaldi, Marilena; Chatzinotas, Symeon UL et al

in Proceedings of IEEE Global Communications Conference (2017, December)

Fast growth of Internet content and availability of electronic devices such as smart phones and laptops has created an explosive content demand. As one of the 5G technology enablers, caching is a ... [more ▼]

Fast growth of Internet content and availability of electronic devices such as smart phones and laptops has created an explosive content demand. As one of the 5G technology enablers, caching is a promising technique to off-load the network backhaul and reduce the content delivery delay. Satellite communications provides immense area coverage and high data rate, hence, it can be used for large-scale content placement in the caches. In this work, we propose using hybrid mono/multi-beam satellite-terrestrial backhaul network for off-line edge caching of cellular base stations in order to reduce the traffic of terrestrial network. The off-line caching approach is comprised of content placement and content delivery phases. The content placement phase is performed based on local and global content popularities assuming that the content popularity follows Zipf-like distribution. In addition, we propose an approach to generate local content popularities based on a reference Zipf-like distribution to keep the correlation of content popularity. Simulation results show that the hybrid satellite-terrestrial architecture considerably reduces the content placement time while sustaining the cache hit ratio quite close to the upper-bound compared to the satellite-only method. [less ▲]

Detailed reference viewed: 167 (4 UL)
Full Text
Peer Reviewed
See detailEnergy Minimization for Cache-assisted Content Delivery Networks with Wireless Backhaul
Vu, Thang Xuan UL; Chatzinotas, Symeon UL; Ottersten, Björn UL et al

in IEEE Wireless Communications Letters (2017)

Content caching is an efficient technique to reduce delivery latency and system congestion during peak-traffic time by bringing data closer to end users. In this paper, we investigate energy-efficiency ... [more ▼]

Content caching is an efficient technique to reduce delivery latency and system congestion during peak-traffic time by bringing data closer to end users. In this paper, we investigate energy-efficiency performance of cache-assisted content delivery networks with wireless backhaul by taking into account cache capability when designing the signal transmission. We consider multi-layer caching and the performance in cases when both base station (BS) and users are capable of storing content data in their local cache. Specifically, we analyse energy consumption in both backhaul and access links under two uncoded and coded caching strategies. Then two optimization problems are formulated to minimize total energy cost for the two caching strategies while satisfying some given quality of service constraint. We demonstrate via numerical results that the uncoded caching achieves higher energy efficiency than the coded caching in the small user cache size regime. [less ▲]

Detailed reference viewed: 103 (4 UL)
Full Text
Peer Reviewed
See detailCoverage Extension via Side-Lobe Transmission in Multibeam Satellite System
Gharanjik, Ahmad UL; Kmieciak, Jarek; Shankar, Bhavani UL et al

in 23rd Ka and Broadband Communications Conference (2017, October 16)

In this paper, we study feasibility of coverage extension of a multibeam satellite network by providing low-rate communications to terminals located outside the coverage of main beams. Focusing on the MEO ... [more ▼]

In this paper, we study feasibility of coverage extension of a multibeam satellite network by providing low-rate communications to terminals located outside the coverage of main beams. Focusing on the MEO satellite network, and using realistic link budgets from O3b networks, we investigate the performance of both forward and return-links for terminals stationed in the side lobes of the main beams. Particularly, multi-carrier transmission for forward-link and single carrier transmission for return-link are examined and the resulting coverage and data rate for different setups are evaluated. Simulation results verifies that side-lobe transmission can extend the coverage area and provide considerable data rate, thereby providing a solution for enhancing capacity of existing networks. [less ▲]

Detailed reference viewed: 70 (7 UL)
Full Text
Peer Reviewed
See detailSecrecy Analysis of Random Wireless Networks with Multiple Eavesdroppers
Vuppala, Satyanarayana UL; Chatzinotas, Symeon UL; Ottersten, Björn UL

in Proceedings of IEEE Inter. Symp. on Personal, Indoor and Mobile Radio Communications (PIMRC), Montreal, Canada (2017)

Detailed reference viewed: 127 (4 UL)
Full Text
Peer Reviewed
See detailRelay Selection Strategies for SWIPT-Enabled Cooperative Wireless Systems
Gautam, Sumit UL; Lagunas, Eva UL; Sharma, Shree Krishna UL et al

in IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Montreal, Canada, Oct. 2017 (2017, October)

Detailed reference viewed: 386 (53 UL)