References of "Ottersten, Björn 50002797"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailHybrid Transceivers Design for Large-Scale Antenna Arrays Using Majorization-Minimization Algorithms
Arora, Aakash UL; Tsinos, Christos UL; Shankar, Bhavani UL et al

in IEEE Transactions on Signal Processing (in press)

Detailed reference viewed: 140 (51 UL)
Full Text
Peer Reviewed
See detailOversampled DFT-Modulated Biorthogonal Filter Banks: Perfect Reconstruction Designs and Multiplierless Approximations
Alves Martins, Wallace UL; Shankar, Bhavani UL; Ottersten, Björn UL

in IEEE Transactions on Circuits and Systems. II, Express Briefs (in press)

We propose a novel methodology for designing oversampled discrete Fourier transform-modulated uniform filter banks. The analysis prototype is designed as a Nyquist filter, whereas the synthesis prototype ... [more ▼]

We propose a novel methodology for designing oversampled discrete Fourier transform-modulated uniform filter banks. The analysis prototype is designed as a Nyquist filter, whereas the synthesis prototype is designed to guarantee perfect reconstruction (PR) considering oversampling. The resulting optimization problem fits into the disciplined convex programming framework, as long as some convex objective function is employed, as the minimization of either the stop-band energy or the maximum deviation from a desired response. The methodology also accounts for near-PR multiplierless approximations of the prototype analysis and synthesis filters, whose coefficients are obtained in the sum-of-power-of-two (SOPOT) space. The quantized coefficients are computed using successive approximation of vectors, which is able to yield filters with a reduced number of SOPOT coefficients in a computationally efficient manner. The proposed methodology is especially appealing for supporting actual hardware deployments, such as modern digital transparent processors to be used in next-generation satellite payloads. [less ▲]

Detailed reference viewed: 126 (6 UL)
Full Text
Peer Reviewed
See detailMM-Based Solution for Partially Connected Hybrid Transceivers with Large Scale Antenna Arrays
Arora, Aakash UL; Tsinos, Christos UL; Shankar, Bhavani UL et al

in Proc. 2019 IEEE Global Communications Conference (GLOBECOM) (in press)

In a mmWave multiple-input multiple-output (MIMO) communication system employing a large-scale antenna array (LSAA), the hybrid transceivers are used to reduce the power consumption and the hardware cost ... [more ▼]

In a mmWave multiple-input multiple-output (MIMO) communication system employing a large-scale antenna array (LSAA), the hybrid transceivers are used to reduce the power consumption and the hardware cost. In a hybrid analog-digital (A/D) transceiver, the pre/post-processing operation splits into a lower-dimensional baseband (BB) pre/postcoder, followed by a network of analog phase shifters. Primarily two kinds of hybrid architectures are proposed in the literature to implement hybrid transceivers namely, the fully-connected and the partially-connected. Implementation of fully-connected architecture has higher hardware complexity, cost and power consumption in comparison with partially-connected. In this paper, we focus on partially-connected hybrid architecture and develop a low-complexity algorithm for transceiver design for a single user point-to-point mmWave MIMO system. The proposed algorithm utilizes the variable elimination (projection) and the minorization-maximization (MM) frameworks and has convergence guarantees to a stationary point. Simulation results demonstrate that the proposed algorithm is easily scalable for LSAA systems and achieves significantly improved performance in terms of the spectral efficiency (SE) of the system compared to the state-of-the-art solution. [less ▲]

Detailed reference viewed: 32 (6 UL)
Full Text
Peer Reviewed
See detailHybrid Analog-Digital Precoding Design for Satellite Systems
Arora, Aakash UL; Tsinos, Christos UL; Shankar, Bhavani UL et al

in Proc. 37th International Communications Satellite Systems Conference (ICSSC'19) (in press)

The work investigates the feasibility of massive MIMO in SatCom. Towards this, the necessary channel models, system parameters and scenarios are identified and a basic simulator developed. The work then ... [more ▼]

The work investigates the feasibility of massive MIMO in SatCom. Towards this, the necessary channel models, system parameters and scenarios are identified and a basic simulator developed. The work then considers an efficient implementation of the massive MIMO transmission through the use of hybrid analog/digital precoder. Efficient algorithmic solutions are proposed for the partially connected precoder architecture which enables efficiency in power/ hardware complexity and its performance evaluated. [less ▲]

Detailed reference viewed: 17 (7 UL)
Full Text
Peer Reviewed
See detailMajorization-Minimization Algorithms for Analog Beamforming with Large-Scale Antenna Arrays
Arora, Aakash UL; Tsinos, Christos UL; Shankar, Bhavani UL et al

in Proc. 7th IEEE Global Conference on Signal and Information Processing (GlobalSIP) 2019 (in press)

Beamforming with large-scale antenna arrays (LSAA) is one of the predominant operations in designing wireless communication systems. However, the implementation of a fully digital system significantly ... [more ▼]

Beamforming with large-scale antenna arrays (LSAA) is one of the predominant operations in designing wireless communication systems. However, the implementation of a fully digital system significantly increases the number of required radio-frequency (RF) chains, which may be prohibitive. Thus, analog beamforming based on a phase-shifting network driven by a variable gain amplifier (VGA) is a potential alternative technology. In this paper, we cast the beamforming vector design problem as a beampattern matching problem, with an unknown power gain. This is formulated as a unit-modulus least-squares (ULS) problem where the optimal gain of the VGA is also designed in addition to the beamforming vector. We also consider a scenario where the receivers have the additional processing capability to adjust the phases of the incoming signals to mitigate specular multipath components. We propose efficient majorization-minimization (MM) based algorithms with convergence guarantees to a stationary point for solving both variants of the proposed ULS problem. Numerical results verify the effectiveness of the proposed solution in comparison with the existing state-of-the-art techniques. [less ▲]

Detailed reference viewed: 15 (6 UL)
Full Text
Peer Reviewed
See detailHybrid Analog-Digital Transceiver Designs for Multi-User MIMO mmWave Cognitive Radio Systems
Tsinos, Christos UL; Chatzinotas, Symeon UL; Ottersten, Björn UL

in IEEE Transactions on Cognitive Communications and Networking (2020)

Detailed reference viewed: 29 (0 UL)
Full Text
Peer Reviewed
See detailInterference Exploitation via Symbol-Level Precoding: Overview, State-of-the-Art and Future Directions
Li, Ang; Spano, Danilo UL; Krivochiza, Jevgenij UL et al

in IEEE Communications Surveys and Tutorials (2020)

Interference is traditionally viewed as a performance limiting factor in wireless communication systems, which is to be minimized or mitigated. Nevertheless, a recent line of work has shown that by ... [more ▼]

Interference is traditionally viewed as a performance limiting factor in wireless communication systems, which is to be minimized or mitigated. Nevertheless, a recent line of work has shown that by manipulating the interfering signals such that they add up constructively at the receiver side, known interference can be made beneficial and further improve the system performance in a variety of wireless scenarios, achieved by symbol-level precoding (SLP). This paper aims to provide a tutorial on interference exploitation techniques from the perspective of precoding design in a multi-antenna wireless communication system, by beginning with the classification of constructive interference (CI) and destructive interference (DI). The definition for CI is presented and the corresponding mathematical characterization is formulated for popular modulation types, based on which optimization-based precoding techniques are discussed. In addition, the extension of CI precoding to other application scenarios as well as for hardware efficiency is also described. Proof-of-concept testbeds are demonstrated for the potential practical implementation of CI precoding, and finally a list of open problems and practical challenges are presented to inspire and motivate further research directions in this area. [less ▲]

Detailed reference viewed: 20 (0 UL)
Full Text
Peer Reviewed
See detailLocalization Performance of 1-Bit Passive Radars in NB-IoT Applications
Sedighi, Saeid UL; Mishra, Kumar Vijay; Shankar, Bhavani UL et al

in Sedighi, Saeid; Mishra, Kumar Vijay; Shankar, Bhavani (Eds.) et al Localization Performance of 1-Bit Passive Radars in NB-IoT Applications (2019, December 14)

Location-based services form an important use-case in emerging narrowband Internet-of-Things (NB-IoT) networks. Critical to this offering is an accurate estimation of the location without overlaying the ... [more ▼]

Location-based services form an important use-case in emerging narrowband Internet-of-Things (NB-IoT) networks. Critical to this offering is an accurate estimation of the location without overlaying the network with additional active sensors. The massive number of devices, low power requirement, and low bandwidths restrict the sampling rates of NB-IoT receivers. In this paper, we propose a novel low-complexity approach for NB-IoT target delay estimation in cases where one-bit analog-to-digital-converters (ADCs) are employed to sample the received radar signal instead of high-resolution ADCs. This problem has potential applications in the design of inexpensive NB-IoT radar and sensing devices. We formulate the target estimation as a multivariate fractional optimization problem and solve it via Lasserre's semi-definite program relaxation. Numerical experiments suggest feasibility of the proposed approach yielding high localization accuracy with a very low number of 1-bit samples. [less ▲]

Detailed reference viewed: 15 (0 UL)
Full Text
Peer Reviewed
See detailJoint Scheduling and Precoding for Frame-Based Multigroup Multicasting in Satellite Communications
Bandi, Ashok UL; Shankar, Bhavani UL; Chatzinotas, Symeon UL et al

in Bandi, Ashok; Shankar, Bhavani; Chatzinotas, Symeon (Eds.) et al Joint Scheduling and Precoding for Frame-Based Multigroup Multicasting in Satellite Communications (2019, December 09)

Recent satellite standards enforce the coding of multiple users’ data in a frame. This transmission strategy mimics the well-known physical layer multigroup multicasting (MGMC). However, typical beam ... [more ▼]

Recent satellite standards enforce the coding of multiple users’ data in a frame. This transmission strategy mimics the well-known physical layer multigroup multicasting (MGMC). However, typical beam coverage with a large number of users and limited frame length lead to the scheduling of only a few users. Moreover, in emerging aggressive frequency reuse systems, scheduling is coupled with precoding. This is addressed in this work, through the joint design of scheduling and precoding for frame-based MGMC satellite systems. This aim is formulated as the maximization of the sum-rate under per beam power constraint and minimum SINR requirement of scheduled users. Further, a framework is proposed to transform the non-smooth SR objective with integer scheduling and nonconvex SINR constraints as a difference-of-convex problem that facilitates the joint update of scheduling and precoding. Therein, an efficient convex-concave procedure based algorithm is proposed. Finally, the gains (up to 50%) obtained by the jointed design over state-of-the-art methods is shown through Monte-Carlo simulations. [less ▲]

Detailed reference viewed: 105 (30 UL)
Full Text
Peer Reviewed
See detailMachine learning for physical-layer security: Attacks and SLP Countermeasures for Multiantenna Downlink Systems
Mayouche, Abderrahmane UL; Spano, Danilo; Tsinos, Christos UL et al

in 2019 IEEE Global Communications Conference (2019)

Most physical-layer security (PLS) work employ information theoretic metrics for performance analysis. In this paper, however, we investigate PLS from a signal processing point of view, where we rely on ... [more ▼]

Most physical-layer security (PLS) work employ information theoretic metrics for performance analysis. In this paper, however, we investigate PLS from a signal processing point of view, where we rely on bit-error rate (BER) at the eavesdropper (Eve) as a metric for information leakage. Meanwhile, recently, symbol-level precoding (SLP) has been shown to provide PLS gains as a new way for security. However, in this work, we introduce a machine learning (ML) based attack, where we show that even SLP schemes can be vulnerable to such attacks. Namely, this attack manifests when an eavesdropper (Eve) utilizes ML in order to learn the precoding pattern when precoded pilots are sent. With this ability, an Eve can decode data with favorable accuracy. As a countermeasure to this attack, we propose a novel precoding design. The proposed countermeasure yields high BER at the Eve, which makes symbol detection practically infeasible for the latter, thus providing physical-layer security between the base station (BS) and the users. In the numerical results, we validate both the attack and the countermeasure, and show that this gain in security can be achieved at the expense of only a small additional power consumption at the transmitter. [less ▲]

Full Text
Peer Reviewed
See detailOptimum Design for Sparse FDA-MIMO Automotive Radar
Sedighi, Saeid UL; Shankar, Bhavani UL; Mishra, Kumar Vijay et al

in Sedighi, Saeid; Shankar, Bhavani; Mishra, Kumar Vijay (Eds.) et al Optimum Design for Sparse FDA-MIMO Automotive Radar (2019, November 03)

Automotive radars usually employ multiple-input multiple-output (MIMO) antenna arrays to achieve high azimuthal resolution with fewer elements than a phased array. Despite this advantage, hardware costs ... [more ▼]

Automotive radars usually employ multiple-input multiple-output (MIMO) antenna arrays to achieve high azimuthal resolution with fewer elements than a phased array. Despite this advantage, hardware costs and desired radar size limits the usage of more antennas in the array. Similar trade-off is encountered while attempting to achieve high range resolution which is limited by the signal bandwidth. However, nowadays given the demand for spectrum from communications services, wide bandwidth is not readily available. To address these issues, we propose a sparse variant of Frequency Diverse Array MIMO (FDA-MIMO) radar which enjoys the benefits of both FDA and MIMO techniques, including fewer elements, decoupling, and efficient joint estimation of target parameters. We then employ the Cram\'{e}r-Rao bound for angle and range estimation as a performance metric to design the optimal antenna placement and carrier frequency offsets for the transmit waveforms. Numerical experiments suggest that the performance of sparse FDA-MIMO radar is very close to the conventional FDA-MIMO despite 50\% reduction in the bandwidth and antenna elements. [less ▲]

Detailed reference viewed: 15 (0 UL)
Full Text
Peer Reviewed
See detailHardware Precoding Demonstration in Multi-Beam UHTS Communications under Realistic Payload Characteristics
Merlano Duncan, Juan Carlos UL; Querol Borras, Jorge UL; Maturo, Nicola UL et al

in Proceedings of the 37th International Communications Satellite Systems Conference (2019, November 01)

In this paper, we present a new hardware test-bed to demonstrate closed-loop precoded communications for interference mitigation in multi-beam ultra high throughput satellite systems under realistic ... [more ▼]

In this paper, we present a new hardware test-bed to demonstrate closed-loop precoded communications for interference mitigation in multi-beam ultra high throughput satellite systems under realistic payload and channel impairments. We build the test-bed to demonstrate a real-time channel aided precoded transmission under realistic conditions such as the power constraints and satellite-payload non-linearities. We develop a scalable architecture of an SDR platform with the DVB-S2X piloting. The SDR platform consists of two parts: analog-to-digital (ADC) and digital-to-analog (DAC) converters preceded by radio frequency (RF) front-end and Field-Programmable Gate Array (FPGA) backend. The former introduces realistic impairments in the transmission chain such as carrier frequency and phase misalignments, quantization noise of multichannel ADC and DAC and non-linearities of RF components. It allows evaluating the performance of the precoded transmission in a more realistic environment rather than using only numerical simulations. We benchmark the performance of the communication standard in realistic channel scenarios, evaluate received signal SNR, and measure the actual channel throughput using LDPC codes. [less ▲]

Detailed reference viewed: 16 (2 UL)
Full Text
Peer Reviewed
See detailCharacterization of the MSE Region under a Total Power Budget for Asynchronous Two-Way Relay Networks
Rahimi, Razgar; Shahbazpanahi, Shahram UL; Ottersten, Björn UL

in The Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, 3-6 November 2019 (2019, November)

Detailed reference viewed: 91 (0 UL)
Full Text
Peer Reviewed
See detailA Joint Solution for Scheduling and Precoding in Multiuser MISO Downlink Channels
Bandi, Ashok UL; Shankar, Bhavani UL; Chatzinotas, Symeon UL et al

in IEEE Transactions on Wireless Communications (2019)

Detailed reference viewed: 127 (37 UL)
Full Text
Peer Reviewed
See detailBODYFITR: Robust Automatic 3D Human Body Fitting
Saint, Alexandre Fabian A UL; Shabayek, Abd El Rahman UL; Cherenkova, Kseniya UL et al

in Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP) (2019, September 22)

This paper proposes BODYFITR, a fully automatic method to fit a human body model to static 3D scans with complex poses. Automatic and reliable 3D human body fitting is necessary for many applications ... [more ▼]

This paper proposes BODYFITR, a fully automatic method to fit a human body model to static 3D scans with complex poses. Automatic and reliable 3D human body fitting is necessary for many applications related to healthcare, digital ergonomics, avatar creation and security, especially in industrial contexts for large-scale product design. Existing works either make prior assumptions on the pose, require manual annotation of the data or have difficulty handling complex poses. This work addresses these limitations by providing a novel automatic fitting pipeline with carefully integrated building blocks designed for a systematic and robust approach. It is validated on the 3DBodyTex dataset, with hundreds of high-quality 3D body scans, and shown to outperform prior works in static body pose and shape estimation, qualitatively and quantitatively. The method is also applied to the creation of realistic 3D avatars from the high-quality texture scans of 3DBodyTex, further demonstrating its capabilities. [less ▲]

Detailed reference viewed: 85 (14 UL)
Full Text
Peer Reviewed
See detailWireless Multi-group Multicast Precoding with Selective RF Energy Harvesting
Gautam, Sumit UL; Lagunas, Eva UL; Chatzinotas, Symeon UL et al

Scientific Conference (2019, September 05)

We present a novel framework for multi-group multicast precoding in the presence of three types of wireless users which are distributed among various multicast groups. A multi-antenna transmitter conveys ... [more ▼]

We present a novel framework for multi-group multicast precoding in the presence of three types of wireless users which are distributed among various multicast groups. A multi-antenna transmitter conveys information and/or energy to the groups of corresponding receivers using more than one multicast streams. The information specific users have conventional receiver architectures to process data, energy harvesting users collect energy using the non-linear energy harvesting module and each of the joint information decoding and energy harvesting capable user is assumed to employ the separated architecture with disparate non-linear energy harvesting and conventional information decoding units. In this context, we formulate and analyze the problem of total transmit power minimization for optimal precoder design subjected to minimum signal-to-interference-and-noise ratio and harvested energy demands at the respective users under three different scenarios. This problem is solved via semi-definite relaxation and the advantages of employing separate information and energy precoders are shown over joint and per-user information and energy precoder designs. Simulation results illustrate the benefits of proposed framework under several operating conditions and parameter values. [less ▲]

Detailed reference viewed: 119 (16 UL)
Full Text
Peer Reviewed
See detailOptimal Resource Allocation for NOMA-Enabled Cache Replacement and Content Delivery
Lei, Lei UL; Vu, Thang Xuan UL; Xiang, Lin UL et al

in IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (IEEE PIMRC 2019) (2019, September)

Detailed reference viewed: 21 (0 UL)
Full Text
Peer Reviewed
See detailLoad Coupling and Energy Optimization in Multi-Cell and Multi-Carrier NOMA Networks
Lei, Lei UL; You, Lei; Yang, Yang et al

in IEEE Transactions on Vehicular Technology (2019)

Detailed reference viewed: 100 (13 UL)