References of "Olivares Mendez, Miguel Angel 50002787"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailA Hierarchical Strategy for Real-Time Tracking On-Board UAVs
Martinez, Carol; Campoy, Pascual; Mondragon, Ivan F. et al

in ICUAS 2012 : 2012 International Conference on Unmanned Aircraft Systems (2012, June)

In this paper, we present a real-time tracking strategy based on direct methods for tracking tasks on-board UAVs, that is able to overcome problems posed by the challenging conditions of the task: e.g ... [more ▼]

In this paper, we present a real-time tracking strategy based on direct methods for tracking tasks on-board UAVs, that is able to overcome problems posed by the challenging conditions of the task: e.g. constant vibrations, fast 3D changes, and limited capacity on-board. The vast majority of approaches make use of feature-based methods to track objects. Nonetheless, in this paper we show that although some of these feature-based solutions are faster, direct methods can be more robust under fast 3D motions (fast changes in position), some changes in appearance, constant vibrations (without requiring any specific hardware or software for video stabilization), and situations where part of the object to track is out the field of view of the camera. The performance of the proposed strategy is evaluated with images from real-flight tests using different evaluation mechanisms (e.g. accurate position estimation using a Vicon sytem). Results show that our tracking strategy performs better than well known feature-based algorithms and well known configurations of direct methods, and that the recovered data is robust enough for vision-in-the-loop tasks. [less ▲]

Detailed reference viewed: 58 (8 UL)
Full Text
Peer Reviewed
See detailRapid Prototyping Framework for Visual Control of Autonomous Micro Aerial Vehicles
Mellado-Bataller, Ignacio; Campoy, Pascual; Olivares Mendez, Miguel Angel UL et al

in Advances in Intelligent Systems and Computing (2012), 193

Rapid prototyping environments can speed up the research of visual control algorithms. We have designed and implemented a software framework for fast prototyping of visual control algorithms for Micro ... [more ▼]

Rapid prototyping environments can speed up the research of visual control algorithms. We have designed and implemented a software framework for fast prototyping of visual control algorithms for Micro Aerial Vehicles (MAV). We have applied a combination of a proxy-based network communication architecture and a custom Application Programming Interface. This allows multiple experimental configurations, like drone swarms or distributed processing of a drones video stream. Currently, the framework supports a low-cost MAV: the Parrot AR.Drone. Real tests have been performed on this platform and the results show comparatively low figures of the extra communication delay introduced by the framework, while adding new functionalities and flexibility to the selected drone. This implementation is open-source and can be downloaded from www.vision4uav.com/?q=VC4MAV-FW [less ▲]

Detailed reference viewed: 98 (1 UL)
Full Text
Peer Reviewed
See detailUAS See-and-Avoid using two different approaches of Fuzzy Control
Olivares Mendez, Miguel Angel UL; Mejias, Luis; Campoy, Pascual et al

in 2012 International Conference on Unmanned Aircraft Systems (ICUAS'12) (2012)

This work presents two UAS See and Avoid approaches using Fuzzy Control. We compare the performance of each controller when a Cross-Entropy method is applied to optimase the parameters for one of the ... [more ▼]

This work presents two UAS See and Avoid approaches using Fuzzy Control. We compare the performance of each controller when a Cross-Entropy method is applied to optimase the parameters for one of the controllers. Each controller receive information from an image processing frontend that detect and track targets in the environment. Visual information is then used under a visual servoing approach to perform autonomous avoidance. Experimental flight trials using a small quadrotor were performed to validate and compare the behaviour of both controllers. [less ▲]

Detailed reference viewed: 59 (1 UL)
Full Text
Peer Reviewed
See detailSee-and-Avoid Quadcopter using Fuzzy Control Optimized by Cross-Entropy
Olivares Mendez, Miguel Angel UL; Campoy, Pascual; Mellado-Bataller, Ignacio et al

in See-and-Avoid Quadcopter using Fuzzy Control Optimized by Cross-Entropy (2012)

In this work we present an optimized fuzzy visual servoing system for obstacle avoidance using an unmanned aerial vehicle. The cross-entropy theory is used to optimise the gains of our controllers. The ... [more ▼]

In this work we present an optimized fuzzy visual servoing system for obstacle avoidance using an unmanned aerial vehicle. The cross-entropy theory is used to optimise the gains of our controllers. The optimization process was made using the ROS-Gazebo 3D simulation with purposeful extensions developed for our experiments. Visual servoing is achieved through an image processing front-end that uses the Camshift algorithm to detect and track objects in the scene. Experimental flight trials using a small quadrotor were performed to validate the parameters estimated from simulation. The integration of cross-entropy methods is a straightforward way to estimate optimal gains achieving excellent results when tested in real flights. [less ▲]

Detailed reference viewed: 107 (2 UL)
Full Text
Peer Reviewed
See detailAdaptive Control System based on Lineal Control Theory for the Path-Following Problem of a Car-Like Mobile Robot
Sanchez Lopez, Jose Luis UL; Campoy, Pascual; Olivares Mendez, Miguel Angel UL et al

in IFAC Conference on Advances in PID Control PID'12 (2012)

The objective of this paper is to design a path following control system for a car-like mobile robot using classical linear control techniques, so that it adapts on-line to varying conditions during the ... [more ▼]

The objective of this paper is to design a path following control system for a car-like mobile robot using classical linear control techniques, so that it adapts on-line to varying conditions during the trajectory following task. The main advantages of the proposed control structure is that well known linear control theory can be applied in calculating the PID controllers to ful l control requirements, while at the same time it is exible to be applied in non-linear changing conditions of the path following task. For this purpose the Frenet frame kinematic model of the robot is linearised at a varying working point that is calculated as a function of the actual velocity, the path curvature and kinematic parameters of the robot, yielding a transfer function that varies during the trajectory. The proposed controller is formed by a combination of an adaptive PID and a feed-forward controller, which varies accordingly with the working conditions and compensates the non-linearity of the system. The good features and exibility of the proposed control structure have been demonstrated through realistic simulations that include both kinematics and dynamics of the car-like robot. [less ▲]

Detailed reference viewed: 99 (8 UL)
Full Text
Peer Reviewed
See detailAerial object following using visual fuzzy servoing
Olivares Mendez, Miguel Angel UL; Mondragon, Ivan; Campoy, Pascual et al

in First Workshop on Research, Development and Education on Unmanned Aerial Systems (RED-UAS 2011) (2011)

This article presents a visual servoing system to follow a 3D moving object by a Micro Unmanned Aerial Vehicle (MUAV). The presented control strategy is based only on the visual information given by an ... [more ▼]

This article presents a visual servoing system to follow a 3D moving object by a Micro Unmanned Aerial Vehicle (MUAV). The presented control strategy is based only on the visual information given by an adaptive tracking method based on the color information. A visual fuzzy system has been developed for servoing the camera situated on a rotary wing MAUV, that also considers its own dynamics. This system is focused on continuously following of an aerial moving target object, maintaining it with a fixed safe distance and centered on the image plane. The algorithm is validated on real flights on outdoors scenarios, showing the robustness of the proposed systems against winds perturbations, illumination and weather changes among others. The obtained results indicate that the proposed algorithms is suitable for complex controls task, such object following and pursuit, flying in formation, as well as their use for indoor navigation [less ▲]

Detailed reference viewed: 57 (3 UL)
Full Text
Peer Reviewed
See detail3D object following based on visual information for Unmanned Aerial Vehicles
Mondragón, I. F.; Campoy, P.; Olivares Mendez, Miguel Angel UL et al

in Robotics Symposium, 2011 IEEE IX Latin American and IEEE Colombian Conference on Automatic Control and Industry Applications (LARC) (2011)

Detailed reference viewed: 89 (1 UL)
Full Text
Peer Reviewed
See detailA visual AGV-urban car using Fuzzy control
Olivares Mendez, Miguel Angel UL; Mellado, I.; Campoy, P. et al

in Automation, Robotics and Applications (ICARA), 2011 5th International Conference on (2011)

The goal of the work described in this paper is to develop a visual line guided system for being used on-board an Autonomous Guided Vehicle (AGV) commercial car, controlling the steering and using just ... [more ▼]

The goal of the work described in this paper is to develop a visual line guided system for being used on-board an Autonomous Guided Vehicle (AGV) commercial car, controlling the steering and using just the visual information of a line painted below the car. In order to implement the control of the vehicle, a Fuzzy Logic controller has been implemented, that has to be robust against curvature changes and velocity changes. The only input information for the controller is the visual distance from the image center captured by a camera pointing downwards to the guiding line on the road, at a commercial frequency of 30Hz. The good performance of the controller has successfully been demonstrated in a real environment at urban velocities. The presented results demonstrate the capability of the Fuzzy controller to follow a circuit in urban environments without previous information about the path or any other information from additional sensors. [less ▲]

Detailed reference viewed: 276 (1 UL)
Full Text
Peer Reviewed
See detailOn-board and Ground Visual Pose Estimation Techniques for UAV Control
Martinez, Carol; Mondragon, Ivan F.; Olivares Mendez, Miguel Angel UL et al

in JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS (2011), 61(1-4), 301-320

In this paper, two techniques to control UAVs (Unmanned Aerial Vehicles), based on visual information are presented. The first one is based on the detection and tracking of planar structures from an on ... [more ▼]

In this paper, two techniques to control UAVs (Unmanned Aerial Vehicles), based on visual information are presented. The first one is based on the detection and tracking of planar structures from an on-board camera, while the second one is based on the detection and 3D reconstruction of the position of the UAV based on an external camera system. Both strategies are tested with a VTOL (Vertical take-off and landing) UAV, and results show good behavior of the visual systems (precision in the estimation and frame rate) when estimating the helicopter's position and using the extracted information to control the UAV. [less ▲]

Detailed reference viewed: 173 (1 UL)
Full Text
Peer Reviewed
See detailNON-SYMMETRIC MEMBERSHIP FUNCTION FOR FUZZY-BASED VISUAL SERVOING ONBOARD A UAV
Olivares Mendez, Miguel Angel UL; Campoy, P.; Martinez, C. et al

in Ruan, D Li, TR Xu, Y Chen, GQ Kerre, EE (Ed.) COMPUTATIONAL INTELLIGENCE: FOUNDATIONS AND APPLICATIONS: PROCEEDINGS OF THE 9TH INTERNATIONAL FLINS CONFERENCE (2010, August)

This paper presents the definition of non-symmetric membership function for Fuzzy controllers applied to a pan & tilt vision platform onboard an Unmanned Aerial Vehicle. This improvement allows the ... [more ▼]

This paper presents the definition of non-symmetric membership function for Fuzzy controllers applied to a pan & tilt vision platform onboard an Unmanned Aerial Vehicle. This improvement allows the controllers to have a more adaptive behavior to the non-linearities presented in an UAV. This implementation allows the UAV to follow objects in the environment by using Lucas-Kanade visual tracker, in spite of the aircraft vibrations, the movements of the objects and the aircraft, update has been tested in real flights with an unmanned helicopter of the Computer Vision Group at the UPM, with very successful results, attaining a considerable reduction of the error during the tracking tests. [less ▲]

Detailed reference viewed: 79 (0 UL)
Full Text
Peer Reviewed
See detailFuzzy-4D/RCS for Unmanned Aerial Vehicles
Olivares Mendez, Miguel Angel UL; Campoy, Pascual; Mondragon, Ivan F. et al

in BICS 2010 Conference on Brain-Inspired Cognitive Systems (2010, July)

Abstract This paper presents an improvement of the cognitive architecture, 4D/RCS, developed by the NIST. This improvement consist of the insertion of Fuzzy Logic cells (FLCs), in different parts and ... [more ▼]

Abstract This paper presents an improvement of the cognitive architecture, 4D/RCS, developed by the NIST. This improvement consist of the insertion of Fuzzy Logic cells (FLCs), in different parts and hierarchy levels of the architecture, and the adaptation of this architecture for Unmanned Aerial Vehicles (UAVs). This advance provides an improvement in the functionality of the system based on the uses of the Miguel Olivares’ Fuzzy Software for the definition of the FLCs and its adaptative learning algorithm. These adaptative-FLCs contribute with the reduction of the uncertainty in the data sensor adquisition, a more adaptative behavior of the system to the real world and the reduction of the computational cost in the decision making. [less ▲]

Detailed reference viewed: 93 (1 UL)
Full Text
Peer Reviewed
See detailVisual Servoing for UAVs
Campoy, Pascual; Mondragon, Ivan F.; Olivares Mendez, Miguel Angel UL et al

in Fung, Rong-Fong (Ed.) Visual Servoing (2010)

Detailed reference viewed: 53 (2 UL)
Full Text
Peer Reviewed
See detailA Robotic Eye Controller Based on Cooperative Neural Agents
Chang, Oscar; Campoy, Pascual; Martinez, Carol et al

in Proccedings of World Congress on Computational Intelligence (WCCI 2010) (2010)

A neural behavior initiating agent (BIA) is proposed to integrate relevant compressed image information coming from others cooperating and specialized neural agents. Using this arrangement the problem of ... [more ▼]

A neural behavior initiating agent (BIA) is proposed to integrate relevant compressed image information coming from others cooperating and specialized neural agents. Using this arrangement the problem of tracking and recognizing a moving icon has been solved by partitioning it into three simpler and separated tasks. Neural modules associated to those tasks proved to be easier to train and show a good general performance. The obtained neural controller can handle spurious images and solve an acute image related task in a dynamical environment. Under prolonged dead-lock conditions the controller shows traces of genuine spontaneity. The overall performance has been tested using a pan and tilt camera platform and real images taken from several objects, showing the good tracking results discussed in the paper. [less ▲]

Detailed reference viewed: 68 (0 UL)
Full Text
Peer Reviewed
See detailFuzzy Controller for UAV-Landing Task Using 3D-Position Visual Estimation
Olivares Mendez, Miguel Angel UL; Campoy; Martinez, Carol et al

in Proccedings of World Congress on Computational Intelligence (WCCI 2010) (2010)

This paper presents a Fuzzy Control application for a landing task of an Unmanned Aerial Vehicle, using the 3D-position estimation based on visual tracking of piecewise planar objects. This application ... [more ▼]

This paper presents a Fuzzy Control application for a landing task of an Unmanned Aerial Vehicle, using the 3D-position estimation based on visual tracking of piecewise planar objects. This application allows the UAV to land on scenarios in which it is only possible to use visual information to obtain the position of the vehicle. The use of the homography permits a realtime estimation of the UAV's pose with respect to a helipad using a monocular camera. Fuzzy Logic allows the definition of a model-free control system of the UAV. The Fuzzy controller analyzes the visual information to generate altitude commands for the UAV to develop the landing task. [less ▲]

Detailed reference viewed: 105 (3 UL)
Full Text
Peer Reviewed
See detailOmnidirectional vision applied to Unmanned Aerial Vehicles (UAVs) attitude and heading estimation
Mondragon, Ivan F.; Campoy, Pascual; Martinez, Carol et al

in Robotics & Autonomous Systems (2010), 58(6), 809-819

This paper presents an aircraft attitude and heading estimator using catadioptric images as a principal sensor for UAV or as a redundant system for IMU (Inertial Measure Unit) and gyro sensors. First, we ... [more ▼]

This paper presents an aircraft attitude and heading estimator using catadioptric images as a principal sensor for UAV or as a redundant system for IMU (Inertial Measure Unit) and gyro sensors. First, we explain how the unified theory for central catadioptric cameras is used for attitude and heading estimation, explaining how the skyline is projected on the catadioptric image and how it is segmented and used to calculate the UAV's attitude. Then, we use appearance images to obtain a visual compass, and we calculate the relative rotation and heading of the aerial vehicle. Finally the tests and results using the UAV COLIBRI platform and the validation of them in real flights are presented, comparing the estimated data with the inertial values measured on board. (C) 2010 Elsevier B.V. All rights reserved. [less ▲]

Detailed reference viewed: 128 (1 UL)
Full Text
Peer Reviewed
See detailUnmanned aerial vehicles UAVs attitude, height, motion estimation and control using visual systems
Mondragon, Ivan F.; Olivares Mendez, Miguel Angel UL; Campoy, Pascual et al

in AUTONOMOUS ROBOTS (2010), 29(1), 17-34

This paper presents an implementation of an aircraft pose and motion estimator using visual systems as the principal sensor for controlling an Unmanned Aerial Vehicle (UAV) or as a redundant system for an ... [more ▼]

This paper presents an implementation of an aircraft pose and motion estimator using visual systems as the principal sensor for controlling an Unmanned Aerial Vehicle (UAV) or as a redundant system for an Inertial Measure Unit (IMU) and gyros sensors. First, we explore the applications of the unified theory for central catadioptric cameras for attitude and heading estimation, explaining how the skyline is projected on the catadioptric image and how it is segmented and used to calculate the UAV's attitude. Then we use appearance images to obtain a visual compass, and we calculate the relative rotation and heading of the aerial vehicle. Additionally, we show the use of a stereo system to calculate the aircraft height and to measure the UAV's motion. Finally, we present a visual tracking system based on Fuzzy controllers working in both a UAV and a camera pan and tilt platform. Every part is tested using the UAV COLIBRI platform to validate the different approaches, which include comparison of the estimated data with the inertial values measured onboard the helicopter platform and the validation of the tracking schemes on real flights. [less ▲]

Detailed reference viewed: 126 (4 UL)
Full Text
Peer Reviewed
See detailAn intelligent control strategy based on ANFIS techniques in order to improve the performance of a low-cost unmanned aerial vehicle vision system
Marichal, G. N.; Hernández, A.; Olivares Mendez, Miguel Angel UL et al

in Mechatronics and Embedded Systems and Applications (MESA), 2010 IEEE/ASME International Conference on (2010)

n this paper, an intelligent control approach based on Neuro-Fuzzy systems is presented. A model of a lowcost vision platform for an unmanned aerial system is taken in the study. A simulation platform ... [more ▼]

n this paper, an intelligent control approach based on Neuro-Fuzzy systems is presented. A model of a lowcost vision platform for an unmanned aerial system is taken in the study. A simulation platform including this low-cost vision system and the influence of the helicopter vibrations over this system is shown. The intelligent control approach has been inserted in this simulation platform. Several trials taking these Neuro-Fuzzy systems as a fundamental part of the control strategy have been carried out. Satisfactory results have been achieved in comparison with the results provided by classical techniques. [less ▲]

Detailed reference viewed: 94 (0 UL)
Full Text
Peer Reviewed
See detail3D pose estimation based on planar object tracking for UAVs control
Mondragon, Ivan F.; Campoy, Pascual; Martinez, Carol et al

in Proccedings of IEEE International Conference on Robotics and Automation (ICRA) (2010)

This article presents a real time Unmanned Aerial Vehicles UAVs 3D pose estimation method using planar object tracking, in order to be used on the control system of a UAV. The method explodes the rich ... [more ▼]

This article presents a real time Unmanned Aerial Vehicles UAVs 3D pose estimation method using planar object tracking, in order to be used on the control system of a UAV. The method explodes the rich information obtained by a projective transformation of planar objects on a calibrated camera. The algorithm obtains the metric and projective components of a reference object (landmark or helipad) with respect to the UAV camera coordinate system, using a robust real time object tracking based on homographies. The algorithm is validated on real flights that compare the estimated data against that obtained by the inertial measurement unit IMU, showing that the proposed method robustly estimates the helicopter's 3D position with respect to a reference landmark, with a high quality on the position and orientation estimation when the aircraft is flying at low altitudes, a situation in which the GPS information is often inaccurate. The obtained results indicate that the proposed algorithm is suitable for complex control tasks, such as autonomous landing, accurate low altitude positioning and dropping of payloads. [less ▲]

Detailed reference viewed: 145 (2 UL)
Full Text
Peer Reviewed
See detailVisual servoing using fuzzy controllers on an unmanned aerial vehicle
Olivares Mendez, Miguel Angel UL; Campoy, Pascual; Mondragon, Ivan F. et al

in EUROFUSE 2009. workshop on on preference modelling and decision analysis (2009, September)

This paper presents an implementa- tion of three Fuzzy Logic controllers working in parallel onboard a UAV, two for a pan-tilt camera platform and the third for control the yaw of the helicopter. This ... [more ▼]

This paper presents an implementa- tion of three Fuzzy Logic controllers working in parallel onboard a UAV, two for a pan-tilt camera platform and the third for control the yaw of the helicopter. This implementation uses a Lucas-Kanade tracker algo- rithm with a pyramidal optical ow implementation, which gives infor- mation to follow statics and moving objects, besides the UAV vibrations and movements. The platform con- troller is helped by the heading con- troller, in order to make smooth the big movements to the platform, re- ducing the risk of lost the warp selec- tion of the object to track. Also, the heading control remove the physic limit of the platform at the yaw axis. Some laboratory and UAV tests are presented in order to show the differ- ent behaviors and the good response of the presented controllers. [less ▲]

Detailed reference viewed: 54 (1 UL)
Full Text
Peer Reviewed
See detailA Pan-Tilt Camera Fuzzy Vision Controller on an Unmanned Aerial Vehicle
Olivares Mendez, Miguel Angel UL; Campoy, Pascual; Martinez, Carol et al

in 2009 IEEE-RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (2009)

This paper presents an implementation of two Fuzzy Logic controllers working in parallel for a pan-tilt camera platform on an IJAV. This implementation uses a basic Lucas-Kanade tracker algorithm, which ... [more ▼]

This paper presents an implementation of two Fuzzy Logic controllers working in parallel for a pan-tilt camera platform on an IJAV. This implementation uses a basic Lucas-Kanade tracker algorithm, which sends information about the error between the center of the object to track and the center of the image, to the Fuzzy controller. This information is enough for the controller to follow the object by moving a two axis servo-platform, regardless the UAV vibrations and movements. The two Fuzzy controllers for each axis, work with a rules-base of 49 rules, two inputs and one output with a more significant sector defined to improve the behavior of those controllers. The controllers have shown very good performances in real flights for statics objects, tested on the Colibri prototypes. [less ▲]

Detailed reference viewed: 115 (5 UL)