References of "Olivares Mendez, Miguel Angel 50002787"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailHierarchical control of aerial manipulation vehicle
Kannan, Somasundar UL; Bezzaoucha, Souad UL; Quintanar Guzman, Serket UL et al

in AIP Conference Proceedings (2017), 1798(1), 020069

Hierarchical Control of the Aerial Manipulator is treated here. The modelling aspect of the highly coupled Aerial Vehicle which includes Quadrotor and manipulator is discussed. The control design to ... [more ▼]

Hierarchical Control of the Aerial Manipulator is treated here. The modelling aspect of the highly coupled Aerial Vehicle which includes Quadrotor and manipulator is discussed. The control design to perform tasks in operational space is addressed along with stability discussion. The simulation studies are successfully performed to validate the design methodology. [less ▲]

Detailed reference viewed: 135 (15 UL)
Full Text
Peer Reviewed
See detailAdaptive Control of Hysteretic Robotic arm in Operational Space
Kannan, Somasundar UL; Quintanar Guzman, Serket UL; Bezzaoucha, Souad UL et al

in 5th International Conference on Mechatronics and Control Engineering ICMCE, venice, Italy, 2016 (2016, December 14)

The focus of the current article is on Operational Space Control of a single degree of freedom robotic arm with hysteretic joint behaviour due to actuation by a single Shape Memory Alloy (SMA) wire. A ... [more ▼]

The focus of the current article is on Operational Space Control of a single degree of freedom robotic arm with hysteretic joint behaviour due to actuation by a single Shape Memory Alloy (SMA) wire. A Closed Loop Inverse Kinematics Algorithm is used in the outer loop with Adaptive joint control in the inner loop. A composite stability analysis is used to analyse the stability of the closed loop system and finally successfully validated through simulation study. [less ▲]

Detailed reference viewed: 90 (8 UL)
Full Text
Peer Reviewed
See detailA tracking error control approach for model predictive position control of a quadrotor with time varying reference
Dentler, Jan Eric UL; Kannan, Somasundar UL; Olivares Mendez, Miguel Angel UL et al

in IEEE International Conference on Robotics and Biomimetics ROBIO, Qingdao, China, 2016 (2016, December 06)

In mobile robotic applications, a common problem is the following of a given trajectory with a constant velocity. Using standard model predictive control (MPC) for tracking of time varying trajectories ... [more ▼]

In mobile robotic applications, a common problem is the following of a given trajectory with a constant velocity. Using standard model predictive control (MPC) for tracking of time varying trajectories leads to a constant tracking error. This problem is modelled in this paper as quadrotor position tracking problem. The presented solution is a computationally light-weight target position control (T PC), that controls the tracking error of MPCs for constantly moving targets. The proposed technique is assessed mathematically in the Laplace domain, in simulation, as well as experimentally on a real quadrotor system. [less ▲]

Detailed reference viewed: 209 (26 UL)
Full Text
Peer Reviewed
See detailA real-time model predictive position control with collision avoidance for commercial low-cost quadrotors
Dentler, Jan Eric UL; Kannan, Somasundar UL; Olivares Mendez, Miguel Angel UL et al

in IEEE Multi-Conference on Systems and Control (MSC 2016), Buenos Aires, Argentina, 2016 (2016, September 20)

Unmanned aerial vehicles (UAVs) are the future technology for autonomous fast transportation of individual goods. They have the advantage of being small, fast and not to be limited to the local ... [more ▼]

Unmanned aerial vehicles (UAVs) are the future technology for autonomous fast transportation of individual goods. They have the advantage of being small, fast and not to be limited to the local infrastructure. This is not only interesting for delivery of private consumption goods up to the doorstep, but also particularly for smart factories. One drawback of autonomous drone technology is the high development costs, that limit research and development to a small audience. This work is introducing a position control with collision avoidance as a first step to make low-cost drones more accessible to the execution of autonomous tasks. The paper introduces a semilinear state-space model for a commercial quadrotor and its adaptation to the commercially available AR.Drone 2 system. The position control introduced in this paper is a model predictive control (MPC) based on a condensed multiple-shooting continuation generalized minimal residual method (CMSCGMRES). The collision avoidance is implemented in the MPC based on a sigmoid function. The real-time applicability of the proposed methods is demonstrated in two experiments with a real AR.Drone quadrotor, adressing position tracking and collision avoidance. The experiments show the computational efficiency of the proposed control design with a measured maximum computation time of less than 2ms. [less ▲]

Detailed reference viewed: 386 (44 UL)
Full Text
Peer Reviewed
See detailUAV degradation identification for pilot notification using machine learning techniques
Manukyan, Anush UL; Olivares Mendez, Miguel Angel UL; Bissyande, Tegawendé François D Assise UL et al

in Proceedings of 21st IEEE International Conference on Emerging Technologies and Factory Automation ETFA 2016 (2016, September 06)

Unmanned Aerial Vehicles are currently investigated as an important sub-domain of robotics, a fast growing and truly multidisciplinary research field. UAVs are increasingly deployed in real-world settings ... [more ▼]

Unmanned Aerial Vehicles are currently investigated as an important sub-domain of robotics, a fast growing and truly multidisciplinary research field. UAVs are increasingly deployed in real-world settings for missions in dangerous environments or in environments which are challenging to access. Combined with autonomous flying capabilities, many new possibilities, but also challenges, open up. To overcome the challenge of early identification of degradation, machine learning based on flight features is a promising direction. Existing approaches build classifiers that consider their features to be correlated. This prevents a fine-grained detection of degradation for the different hardware components. This work presents an approach where the data is considered uncorrelated and, using machine learning <br />techniques, allows the precise identification of UAV’s damages. [less ▲]

Detailed reference viewed: 145 (21 UL)
Full Text
Peer Reviewed
See detailOperational Space Control of a Lightweight Robotic Arm Actuated By Shape Memory Alloy (SMA) Wires
Quintanar Guzman, Serket UL; Kannan, Somasundar UL; Olivares Mendez, Miguel Angel UL et al

in ASME 2016 Conferences on Smart Materials, Adaptive Structures and Intelligent Systems, Vermont 28-30 September 2016 (2016, September)

Detailed reference viewed: 202 (29 UL)
Full Text
Peer Reviewed
See detailControl of Aerial Manipulation Vehicle in Operational Space
Kannan, Somasundar UL; Quintanar Guzman, Serket UL; Dentler, Jan Eric UL et al

in 8th International Conference on Electronics, Computers and Artificial Intelligence, Ploiesti, Romania, 30 June-02 July 2016 (2016, July 01)

Detailed reference viewed: 207 (17 UL)
Full Text
Peer Reviewed
See detailLightweight robotic arm actuated by Shape Memory Alloy (SMA) Wires
Quintanar Guzman, Serket UL; Kannan, Somasundar UL; Olivares Mendez, Miguel Angel UL et al

in 8th International Conference on Electronics, Computers and Artificial Intelligence, Ploiesti, Romania, 30 June-02 July 2016 (2016, July 01)

Detailed reference viewed: 232 (17 UL)
Full Text
Peer Reviewed
See detailA Modularization Approach for Nonlinear Model Predictive Control of Distributed Fast Systems
Dentler, Jan Eric UL; Kannan, Somasundar UL; Olivares Mendez, Miguel Angel UL et al

in 24th Mediterranean Conference on Control and Automation (MED), Athens, Greece, June 21-24, 2016 (2016, June 22)

Distributed interconnected systems are omnipresent today. The development of advanced control methods for such systems are still challenging. Herein, the real-time applicability, flexibility, portability ... [more ▼]

Distributed interconnected systems are omnipresent today. The development of advanced control methods for such systems are still challenging. Herein, the real-time applicability, flexibility, portability and ease of implementation are issues of the existing control solutions, especially for more advanced methods such as model predictive control. This paper is addressing these issues by presenting an efficient modular composition scheme for distributed fast nonlinear systems. The advantage of this modularization approach is the capability of changing control objectives, constraints, dynamics and system topology online while maintaining fast computation. This work analyzes the functions that have to be provided for a continuation generalized minimal residual method (CGMRES) model predictive controller based on the underlying control problem. The specific structure of these functions allows their decomposition into suitable fast modules. These modules are then used to recompose the functions which are required for the control of distributed systems in a computational efficient way, while maintaining the flexibility to dynamically exchange system parts. To validate this computational efficiency, the computation time of the proposed modular control approach is compared with a standard nonmodular implementation in a pursuit scenario of quadrotor unmanned aerial vehicles (UAV). Furthermore the real-time applicability is discussed for the given scenario. [less ▲]

Detailed reference viewed: 238 (31 UL)
Full Text
Peer Reviewed
See detailEstimating speed profiles from aerial vision - A comparison of regression based sampling techniques
Freis, Sebastian; Olivares Mendez, Miguel Angel UL; Viti, Francesco UL

in Proceedings of the IEEE 24th Mediterranean Conference on Control and Automation (2016, June)

Detailed reference viewed: 114 (5 UL)
Full Text
Peer Reviewed
See detailVision-Based Steering Control, Speed Assistance and Localization for Inner-CityVehicles
Olivares Mendez, Miguel Angel UL; Sanchez-Lopez, Jose Luis; Jimenez, Felipe et al

in Sensors (2016), 16(3), 362

Autonomous route following with road vehicles has gained popularity in the last few decades. In order to provide highly automated driver assistance systems, different types and combinations of sensors ... [more ▼]

Autonomous route following with road vehicles has gained popularity in the last few decades. In order to provide highly automated driver assistance systems, different types and combinations of sensors have been presented in the literature. However, most of these approaches apply quite sophisticated and expensive sensors, and hence, the development of a cost-efficient solution still remains a challenging problem. This work proposes the use of a single monocular camera sensor for an automatic steering control, speed assistance for the driver and localization of the vehicle on a road. Herein, we assume that the vehicle is mainly traveling along a predefined path, such as in public transport. A computer vision approach is presented to detect a line painted on the road, which defines the path to follow. Visual markers with a special design painted on the road provide information to localize the vehicle and to assist in its speed control. Furthermore, a vision-based control system, which keeps the vehicle on the predefined path under inner-city speed constraints, is also presented. Real driving tests with a commercial car on a closed circuit finally prove the applicability of the derived approach. In these tests, the car reached a maximum speed of 48 km/h and successfully traveled a distance of 7 km without the intervention of a human driver and any interruption. [less ▲]

Detailed reference viewed: 409 (21 UL)
Full Text
Peer Reviewed
See detailAdaptive Control of Robotic arm with Hysteretic Joint
Kannan, Somasundar UL; Bezzaoucha, Souad UL; Quintanar Guzman, Serket UL et al

in 4th International Conference on Control, Mechatronics and Automation (ICCMA'16), Barcelona, Spain 2016 (2016)

This article addresses the problem of control of robotic arm with a hysteretic joint behavior. The mechanical design of the one-degree of freedom robotic arm is presented where the joint is actuated by a ... [more ▼]

This article addresses the problem of control of robotic arm with a hysteretic joint behavior. The mechanical design of the one-degree of freedom robotic arm is presented where the joint is actuated by a Shape Memory Alloy (SMA) wire. The SMA wire based actuation of the joint makes the robotic arm lightweight but at the same time introduces hysteresis type nonlinearities. The nonlinear dynamic model of the robotic arm is introduced and an Adaptive control solution is presented to perform the joint reference tracking in the presence of unknown hysteresis behavior. The Lyapunov stability analysis of the closed loop system is presented and finally proposed adaptive control solution is validated through simulation study on the proposed nonlinear hysteretic robotic arm. [less ▲]

Detailed reference viewed: 131 (6 UL)
Full Text
Peer Reviewed
See detailModel Predictive Control for Spacecraft Rendezvous
Kannan, Somasundar UL; Sajadi Alamdari, Seyed Amin UL; Dentler, Jan Eric UL et al

in 4th International Conference on Control, Mechatronics and Automation ICCMA '16, Barcelona, Spain, 2016 (2016)

The current paper addresses the problem of Spacecraft Rendezvous using Model Predictive Control (MPC). The Clohessy-Wiltshire-Hill equations are used to model the spacecraft relative motion. Here the ... [more ▼]

The current paper addresses the problem of Spacecraft Rendezvous using Model Predictive Control (MPC). The Clohessy-Wiltshire-Hill equations are used to model the spacecraft relative motion. Here the rendezvous problem is discussed by trajectory control using MPC method. Two different scenarios are addressed in trajectory control. The first scenario consist of position control with fuel constraint, secondly the position control is performed in the presence of obstacles. Here the problem of fuel consumption and obstacle avoidance is addressed directly in the cost function. The proposed methods are successfully analysed through simulations. [less ▲]

Detailed reference viewed: 147 (14 UL)
Full Text
Peer Reviewed
See detailTowards an Autonomous Vision-Based Unmanned Aerial System against Wildlife Poachers
Olivares Mendez, Miguel Angel UL; Fu, Changhong; Ludivig, Philippe et al

in Sensors (2015), 15(12), 29861

Poaching is an illegal activity that remains out of control in many countries. Based on the 2014 report of the United Nations and Interpol, the illegal trade of global wildlife and natural resources ... [more ▼]

Poaching is an illegal activity that remains out of control in many countries. Based on the 2014 report of the United Nations and Interpol, the illegal trade of global wildlife and natural resources amounts to nearly $213 billion every year, which is even helping to fund armed conflicts. Poaching activities around the world are further pushing many animal species on the brink of extinction. Unfortunately, the traditional methods to fight against poachers are not enough, hence the new demands for more efficient approaches. In this context, the use of new technologies on sensors and algorithms, as well as aerial platforms is crucial to face the high increase of poaching activities in the last few years. Our work is focused on the use of vision sensors on UAVs for the detection and tracking of animals and poachers, as well as the use of such sensors to control quadrotors during autonomous vehicle following and autonomous landing. [less ▲]

Detailed reference viewed: 240 (45 UL)
Full Text
Peer Reviewed
See detailContext-based Selection and Execution of Robot Perception Graphs
Hochgeschwender, Nico UL; Olivares Mendez, Miguel Angel UL; Voos, Holger UL et al

in 20th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA'15) (2015, September)

To perform a wide range of tasks service robots need to robustly extract knowledge about the world from the data perceived through the robot’s sensors even in the presence of varying context-conditions ... [more ▼]

To perform a wide range of tasks service robots need to robustly extract knowledge about the world from the data perceived through the robot’s sensors even in the presence of varying context-conditions. This makes the design and devel- opment of robot perception architectures a challenging exercise. In this paper we propose a robot perception architecture which enables to select and execute at runtime different perception graphs based on monitored context changes. To achieve this the architecture is structured as a feedback loop and contains a repository of different perception graph configurations suitable for various context conditions. [less ▲]

Detailed reference viewed: 165 (16 UL)
Full Text
Peer Reviewed
See detailVision Based Fuzzy Control Approaches for Unmanned Aerial Vehicles
Olivares Mendez, Miguel Angel UL; Campoy, Pascual

in 16th World Congress of the International Fuzzy Systems Association (IFSA) 9th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT) (2015, July)

This paper proposed the use of vision based Fuzzy control approaches for autonomous navigation tasks with Unmanned Aerial Vehicles (UAVs). It is shown the advantages of using RGB cameras as the sensor ... [more ▼]

This paper proposed the use of vision based Fuzzy control approaches for autonomous navigation tasks with Unmanned Aerial Vehicles (UAVs). It is shown the advantages of using RGB cameras as the sensor onboard UAVs and the advantages of using Fuzzy logic controllers. It is explained how to set a vision based system and how to define a Fuzzy controller for a general control approach. A specific software was design and used to develop and tune general Fuzzy control approaches. The “how-to” of this software is also explained in this paper. A methodology to how to design, developed and tune Vision based Fuzzy Control (VBFC) approaches in robotics is also presented. Furthermore, it is shown three different VBFC approaches for autonomous navigation developed using this methodology and software. Real experiments were done to validate the different approaches with different vertical takeoff and landing (VTOL) UAVs. [less ▲]

Detailed reference viewed: 168 (13 UL)
Full Text
Peer Reviewed
See detailVision Based Fuzzy Control Autonomous Landing with UAVs: From V-REP to Real Experiments
Olivares Mendez, Miguel Angel UL; Kannan, Somasundar UL; Voos, Holger UL

in 23nd IEEE Mediterranean Conference of Control and Automation (MED), 2015, Torremolinos 2015, Spain (2015, June)

This paper is focused on the design of a vision based control approach for the autonomous landing task of Vertical Take-off and Landing (VTOL) Unmanned Aerial Vehicles (UAVs). Here is presented the setup ... [more ▼]

This paper is focused on the design of a vision based control approach for the autonomous landing task of Vertical Take-off and Landing (VTOL) Unmanned Aerial Vehicles (UAVs). Here is presented the setup of a simulated environment developed in V-REP connected to ROS, and its uses for tuning a vision based control approach. In this work, a Fuzzy control approach was proposed to command the UAV’s vertical, longitudinal, lateral and orientation velocities. The UAV’s pose estimation was done based on a vision algorithm and the knowledge of the landing target. Real experiments with a quadrotor landing in a moving platform are also presented. [less ▲]

Detailed reference viewed: 262 (19 UL)
Full Text
Peer Reviewed
See detailVisual odometry based absolute target geo-location from micro aerial vehicle
Annaiyan, Arun UL; Yadav, Mahadeeswara; Olivares Mendez, Miguel Angel UL et al

in International Conference on Robotics, Automation, Control and Embedded Systems (RACE), 2015 (2015, February 20)

An unmanned aerial system capable of finding world coordinates of a ground target is proposed here. The main focus here was to provide effective methodology to estimate ground target world coordinates ... [more ▼]

An unmanned aerial system capable of finding world coordinates of a ground target is proposed here. The main focus here was to provide effective methodology to estimate ground target world coordinates using aerial images captured by the custom made micro aerial vehicle (MAV) as a part of visual odometery process on real time. The method proposed here for finding target's ground coordinates uses a monocular camera which is placed in MAV belly in forward looking/ Downward looking mode. The Binary Robust Invariant Scalable Key points (BRISK) algorithm was implemented for detecting feature points in the consecutive images. After robust feature point detection, efficiently performing Image Registration between the aerial images captured by MAV and with the Geo referenced images is the prime and core computing operation considered. Precise Image alignment is implemented by accurately estimating Homography matrix. In order to accurately estimate Homography matrix which consists of 9 parameters, this algorithm solves the problem in a Least Square Optimization way. Therefore, this framework can be integrated with visual odometery pipeline; this gives the advantage of reducing the computational burden on the hardware. The system can still perform the task of target geo-localization efficiently based on visual features and geo referenced reference images of the scene which makes this solution to be found as cost effective, easily implementable with robustness in the output. The hardware implementation of MAV along with this dedicated system which can do the proposed work to find the target coordinates is completed. The main application of this work is in search and rescue operations in real time scenario. The methodology was analyzed and executed in MATLAB before implementing real time on the developed platform. Finally, three case studies with different advantages derived from the proposed framework are represented. [less ▲]

Detailed reference viewed: 166 (18 UL)
Full Text
Peer Reviewed
See detailAdaptive Control of Aerial Manipulation Vehicle
Kannan, Somasundar UL; Alma, Marouane; Olivares Mendez, Miguel Angel UL et al

in Porceedings of the 4th IEEE INTERNATIONAL CONFERENCE ON CONTROL SYSTEM, COMPUTING AND ENGINEERING (2014, November)

Adaptive Control of an Aerial Manipulation Vehicle is discussed here. The aerial manipulation vehicle consisting of a quadrotor and a robotic arm has a highly coupled dynamics. The nonlinear coupling ... [more ▼]

Adaptive Control of an Aerial Manipulation Vehicle is discussed here. The aerial manipulation vehicle consisting of a quadrotor and a robotic arm has a highly coupled dynamics. The nonlinear coupling introduces additional forces and moments on the quadrotor which prevents it from precisely hovering at a position and tracking of reference trajectory. A decentralized control of robotic arm and quadrotor is considered. The robotic arm is controlled by a PID approach with acceleration feedback, and the quadrotor is controlled by PD method in the inner loop and adaptive position control in the outer loop. The proposed method successfully handles the problem of hover stabilization and trajectory tracking. [less ▲]

Detailed reference viewed: 196 (14 UL)
Full Text
Peer Reviewed
See detailV-REP & ROS Testbed for Design, Test, and Tuning of a Quadrotor Vision Based Fuzzy Control System for Autonomous Landing
Olivares Mendez, Miguel Angel UL; Kannan, Somasundar UL; Voos, Holger UL

in Porceedings of The International Micro Air Vehicle Conference and Competition 2014 (2014, August)

This paper focuses on the use of the Virtual Robotics Experimental Platform (V-REP) and the Robotics Operative System (ROS) working in parallel for design, test, and tuning of a vision based control ... [more ▼]

This paper focuses on the use of the Virtual Robotics Experimental Platform (V-REP) and the Robotics Operative System (ROS) working in parallel for design, test, and tuning of a vision based control system to command an Unmanned Aerial Vehicle (UAV). Here, is presented how to configure the V-REP, and ROS to work in parallel, and how to use the developed packages in ROS for the pose estimation based on vision and for the design and use of a fuzzy logic control system. It is also shown in this paper a novel vision based fuzzy control approach for the autonomous landing task on a static and on a moving platform. The control system is based on four fuzzy logic controllers (FLC) working in parallel on an external control loop based on the visual information. All the controllers were designed and tuned to command the vertical, longitudinal, lateral, and heading velocities of the UAV. [less ▲]

Detailed reference viewed: 373 (14 UL)