![]() Molitor-Braun, Carine ![]() in Manuscripta Mathematica (1998), 96(1), 23-35 Detailed reference viewed: 21 (0 UL)![]() ; Molitor-Braun, Carine ![]() in Travaux Mathématiques (1998), 10 Detailed reference viewed: 28 (1 UL)![]() Molitor-Braun, Carine ![]() in Travaux Mathématiques (1997), 9 Detailed reference viewed: 32 (1 UL)![]() ; Molitor-Braun, Carine ![]() in Archiv der Mathematik [=ADM] (1996), 67(3), 199-210 Detailed reference viewed: 73 (0 UL)![]() ; Molitor-Braun, Carine ![]() in Travaux Mathématiques (1995), 7 Detailed reference viewed: 54 (0 UL)![]() Molitor-Braun, Carine ![]() in Travaux Mathématiques (1993), 5 Detailed reference viewed: 29 (2 UL)![]() Molitor-Braun, Carine ![]() in Travaux Mathématiques (1992), 4 Detailed reference viewed: 28 (0 UL)![]() Molitor-Braun, Carine ![]() in Travaux Mathématiques (1991), 3 Detailed reference viewed: 34 (0 UL)![]() Molitor-Braun, Carine ![]() in Travaux Mathématiques (1990), 2 Detailed reference viewed: 26 (3 UL)![]() Molitor-Braun, Carine ![]() in Travaux Mathématiques (1989), 1 Detailed reference viewed: 36 (0 UL)![]() ; Molitor-Braun, Carine ![]() ![]() in Preprint (n.d.) For locally compact, second countable, type I groups $G$, we characterize all closed (two-sided) translation invariant subspaces of $L^2(G)$. We establish a similar result for $K$-biinvariant $L^2 ... [more ▼] For locally compact, second countable, type I groups $G$, we characterize all closed (two-sided) translation invariant subspaces of $L^2(G)$. We establish a similar result for $K$-biinvariant $L^2$-functions ($K$ a fixed maximal compact subgroup) in the context of semisimple Lie groups. [less ▲] Detailed reference viewed: 101 (3 UL) |
||