References of "May, Patrick 50002348"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailEvaluation of the Molecular Pathogenesis of Adrenocortical Tumors by Whole-Genome Sequencing
Neininger, Kerstin UL; May, Patrick UL; Altieri, Barbara et al

in Journal of the Endocrine Society (2021, May 03), 5(Issue Supplement_1), 68

Pathogenesis of autonomous steroid secretion and adrenocortical tumorigenesis remains partially obscure. Our aim was to identify novel genetic alterations in adrenocortical adenomas (ACA) without somatic ... [more ▼]

Pathogenesis of autonomous steroid secretion and adrenocortical tumorigenesis remains partially obscure. Our aim was to identify novel genetic alterations in adrenocortical adenomas (ACA) without somatic mutations in known driver genes. Whole-genome sequencing was performed on 26 ACA/blood-derived DNA pairs without driver mutations in PRKACA, GNAS and CTNNB1 genes at previous WES (ENSAT study JCEM 2016). These included 12 cortisol-producing adenomas with Cushing syndrome (CS-CPAs), 7 with mild autonomous cortisol secretion (MACS-CPAs), and 7 endocrine-inactive ACAs (EIAs). Seven adrenocortical carcinomas (ACC) were added to the cohort. We developed a bioinformatics pipeline for a comprehensive genome analysis and to reveal differences in variant distribution. Strelka, VarScan2 and ANNOVAR software and an in-house confidence score were used for variant calling and functional annotation. Combined Annotation-Dependent-Depletion (CADD) values were used to prioritize pathogenic variants. Additional focus relied on variants in pathogenically known pathways (Wnt/β-catenin, cAMP/PKA pathway). NovoBreak algorithm was applied to discover structural variations. Two hypermutated CS-CPA samples were excluded from further analysis. Using different filters, we detected variants in driver genes not observed at WES (one p.S45P in CTNNB1 and one p.R206L in PRKACA in two different CS-CPAs). In total, we report 179,830 variations (179,598 SNVs; 232 indels) throughout all samples, being more abundant in ACC (88,954) compared to ACA (CS-CPAs: 31,821; MACS-CPAs: 35,008; EIAs: 29,963). Most alterations were in intergenic (>50%), followed by intronic and ncRNA intronic regions. A total of 32 predicted pathogenic variants were found in both coding (CADD values ≥ 15) and non-coding (CADD values ≥ 5) regions. We found 3,301 possibly damaging and recurrent variants (intergenic mutations removed) (CS-CPAs: 1,463; MACS-CPAs: 1,549; EIAs: 1,268; ACC: 1,660), mostly accumulated in intronic regions. Some of these were detected in members of the Wnt/β-catenin (CS-CPAs: 6; MACS-CPAs: 2; EIA: 1) and cAMP/PKA (CS-CPAs: 6; MACS-CPAs: 7; EIA: 4) pathways (e.g. ADCY1, ADCY2, GNA13, PDE11A). We also found a slightly higher number of structural variations in EIA (3,620) and ACC (3,486) compared to CS-CPAs (977) and MACS-CPAs (2,119). In conclusion, still unrevealed genetic alterations, especially in intronic regions, may accompany early adrenal tumorigenesis and/or autonomous cortisol secretion. [less ▲]

Detailed reference viewed: 66 (4 UL)
Full Text
Peer Reviewed
See detailSub-genic intolerance, ClinVar, and the epilepsies: A whole-exome sequencing study of 29,165 individuals
Motelow, Joshua E.; Povysil, Gundula; Dhindsa, Ryan S. et al

in The American Journal of Human Genetics (2021)

Summary Both mild and severe epilepsies are influenced by variants in the same genes, yet an explanation for the resulting phenotypic variation is unknown. As part of the ongoing Epi25 Collaboration, we ... [more ▼]

Summary Both mild and severe epilepsies are influenced by variants in the same genes, yet an explanation for the resulting phenotypic variation is unknown. As part of the ongoing Epi25 Collaboration, we performed a whole-exome sequencing analysis of 13,487 epilepsy-affected individuals and 15,678 control individuals. While prior Epi25 studies focused on gene-based collapsing analyses, we asked how the pattern of variation within genes differs by epilepsy type. Specifically, we compared the genetic architectures of severe developmental and epileptic encephalopathies (DEEs) and two generally less severe epilepsies, genetic generalized epilepsy and non-acquired focal epilepsy (NAFE). Our gene-based rare variant collapsing analysis used geographic ancestry-based clustering that included broader ancestries than previously possible and revealed novel associations. Using the missense intolerance ratio (MTR), we found that variants in DEE-affected individuals are in significantly more intolerant genic sub-regions than those in NAFE-affected individuals. Only previously reported pathogenic variants absent in available genomic datasets showed a significant burden in epilepsy-affected individuals compared with control individuals, and the ultra-rare pathogenic variants associated with DEE were located in more intolerant genic sub-regions than variants associated with non-DEE epilepsies. MTR filtering improved the yield of ultra-rare pathogenic variants in affected individuals compared with control individuals. Finally, analysis of variants in genes without a disease association revealed a significant burden of loss-of-function variants in the genes most intolerant to such variation, indicating additional epilepsy-risk genes yet to be discovered. Taken together, our study suggests that genic and sub-genic intolerance are critical characteristics for interpreting the effects of variation in genes that influence epilepsy. [less ▲]

Detailed reference viewed: 49 (2 UL)
Full Text
See detailLoss of function variants in the KCNQ5 gene are associated with genetic generalized epilepsies
Krueger, Johanna; Schubert, Julian; Kegele, Josua et al

E-print/Working paper (2021)

Objective: De novo missense variants in KCNQ5, encoding the voltage gated K+ channel KV7.5, have been described as a cause of developmental and epileptic encephalopathy (DEE) or intellectual disability ... [more ▼]

Objective: De novo missense variants in KCNQ5, encoding the voltage gated K+ channel KV7.5, have been described as a cause of developmental and epileptic encephalopathy (DEE) or intellectual disability (ID). We set out to identify disease-related KCNQ5 variants in genetic generalized epilepsy (GGE) and their underlying mechanisms. Methods: 1292 families with GGE were studied by next-generation sequencing. Whole-cell patch-clamp recordings, biotinylation and phospholipid overlay assays were performed in mammalian cells combined with docking and homology modeling. Results: We identified three deleterious heterozygous missense variants, one truncation and one splice site alteration in five independent families with GGE with predominant absence seizures, two variants were also associated with mild to moderate ID. All three missense variants displayed a strongly decreased current density indicating a loss-of-function (LOF). When mutant channels were co-expressed with wild-type (WT) KV7.5 or KV7.5 and KV7.3 channels, three variants also revealed a significant dominant-negative effect on WT channels. Other gating parameters were unchanged. Biotinylation assays indicated a normal surface expression of the variants. The p.Arg359Cys variant altered PI(4,5)P2-interaction, presumably in the non-conducting preopen-closed state. Interpretation: Our study indicates that specific deleterious KCNQ5 variants are associated with GGE, partially combined with mild to moderate ID. The disease mechanism is a LOF partially with dominant-negative effects through functional, rather than trafficking deficits. LOF of KV7.5 channels will reduce the M-current, likely resulting in increased excitability of KV7.5-expressing neurons. Further studies on a network level are necessary to understand which circuits are affected and how the variants induce generalized seizures. [less ▲]

Detailed reference viewed: 66 (0 UL)
Full Text
See detailUltra-rare constrained missense variants in the epilepsies: Shared and specific enrichment patterns in neuronal gene-sets 2021.04.18.440264
Koko, Mahmoud; Krause, Roland UL; Sander, Thomas et al

E-print/Working paper (2021)

Background: Burden analysis in epilepsy has shown an excess of deleterious ultra-rare variants (URVs) in few gene-sets, such as known epilepsy genes, constrained genes, ion channel or GABAA receptor genes ... [more ▼]

Background: Burden analysis in epilepsy has shown an excess of deleterious ultra-rare variants (URVs) in few gene-sets, such as known epilepsy genes, constrained genes, ion channel or GABAA receptor genes. We set out to investigate the burden of URVs in a comprehensive range of gene-sets presumed to be implicated in epileptogenesis. Methods: We investigated several constraint and conservation-based strategies to study whole exome sequencing data from European individuals with developmental and epileptic encephalopathies (DEE, n = 1,003), genetic generalized epilepsy (GGE, n = 3,064), and non-acquired focal epilepsy (NAFE, n = 3,522), collected by the Epi25 Collaborative, compared to 3,962 ancestry-matched controls. The burden of 12 URVs types in 92 gene-sets was compared between epilepsy cases (DDE, GGE, NAFE) and controls using logistic regression analysis. Results: Burden analysis of brain-expressed genes revealed an excess of different URVs types in all three epilepsy categories which was largest for constrained missense variants. The URVs burden was prominent in neuron-specific, synaptic and developmental genes as well as genes encoding ion channels and receptors, and it was generally higher for DEE and GGE compared to NAFE. The patterns of URVs burden in gene-sets expressed in inhibitory vs. excitatory neurons or receptors suggested a high burden in both in DEE but a differential involvement of inhibitory genes in GGE, while excitatory genes were predominantly affected in NAFE. Top ranking susceptibility genes from a recent genome-wide association study (GWAS) of generalized and focal epilepsies displayed a higher URVs burden in constrained coding regions in GGE and NAFE, respectively. Conclusions: Using exome-based gene-set burden analysis, we demonstrate that missense URVs affecting mainly constrained sites are enriched in neuronal genes in both common and rare severe epilepsy syndromes. Our results indicate a differential impact of these URVs in genes expressed in inhibitory vs. excitatory neurons and receptors in generalized vs. focal epilepsies. The excess of URVs in top-ranking GWAS risk-genes suggests a convergence of rare deleterious and common risk-variants in the pathogenesis of generalized and focal epilepsies. [less ▲]

Detailed reference viewed: 75 (5 UL)
Full Text
Peer Reviewed
See detailBurden of rare variants in synaptic genes in patients with severe tinnitus: An exome based extreme phenotype study
Amanat, Sana; Gallego-Martinez, Alvaro; Sollini, Joseph et al

in EBioMedicine (2021), 66(103309),

Background: tinnitus is a heterogeneous condition associated with audio logical and/or mental disorders. Chronic, severe tinnitus is reported in 1% of the population and it shows a relevant heritability ... [more ▼]

Background: tinnitus is a heterogeneous condition associated with audio logical and/or mental disorders. Chronic, severe tinnitus is reported in 1% of the population and it shows a relevant heritability, according to twins, adoptees and familial aggregation studies. The genetic contribution to severe tinnitus is unknown since large genomic studies include individuals with self-reported tinnitus and large heterogeneity in the phenotype. The aim of this study was to identify genes for severe tinnitus in patients with extreme phenotype. Methods: for this extreme phenotype study, we used three different cohorts with European ancestry (Spanish with Meniere disease (MD), Swedish tinnitus and European generalized epilepsy). In addition, four independent control datasets were also used for comparisons. Whole-exome sequencing was performed for the MD and epilepsy cohorts and whole-genome sequencing was carried out in Swedish with tinnitus. Findings: we found an enrichment of rare missense variants in 24 synaptic genes in a Spanish cohort, the most significant being PRUNE2, AKAP9, SORBS1, ITGAX, ANK2, KIF20B and TSC2 (p < 2E−04), when they were compared with reference datasets. This burden was replicated for ANK2 gene in a Swedish cohort with 97 tinnitus individuals, and in a subset of 34 Swedish patients with severe tinnitus for ANK2, AKAP9 and TSC2 genes (p < 2E−02). However, these associations were not significant in a third cohort of 701 generalized epilepsy individuals without tinnitus. Gene ontology (GO) and gene-set enrichment analyses revealed several pathways and biological processes involved in severe tinnitus, including membrane trafficking and cytoskeletal protein binding in neurons. Interpretation: a burden of rare variants in ANK2, AKAP9 and TSC2 is associated with severe tinnitus. ANK2, encodes a cytoskeleton scaffolding protein that coordinates the assembly of several proteins, drives axonal branching and influences connectivity in neurons. [less ▲]

Detailed reference viewed: 84 (1 UL)
Full Text
Peer Reviewed
See detailPersistence of birth mode-dependent effects on gut microbiome composition, immune system stimulation and antimicrobial resistance during the first year of life
Busi, Susheel Bhanu UL; de Nies, Laura UL; Habier, Janine UL et al

in ISME Communications (2021)

Caesarean section delivery (CSD) disrupts mother-to-neonate transmission of specific microbial strains and functional repertoires as well as linked immune system priming. Here we investigate whether ... [more ▼]

Caesarean section delivery (CSD) disrupts mother-to-neonate transmission of specific microbial strains and functional repertoires as well as linked immune system priming. Here we investigate whether differences in microbiome composition and impacts on host physiology persist at 1 year of age. We perform high-resolution, quantitative metagenomic analyses of the gut microbiomes of infants born by vaginal delivery (VD) or by CSD, from immediately after birth through to 1 year of life. Several microbial populations show distinct enrichments in CSD-born infants at 1 year of age including strains of Bacteroides caccae, Bifidobacterium bifidum and Ruminococcus gnavus, whereas others are present at higher levels in the VD group including Faecalibacterium prausnitizii, Bifidobacterium breve and Bifidobacterium kashiwanohense. The stimulation of healthy donor-derived primary human immune cells with LPS isolated from neonatal stool samples results in higher levels of tumour necrosis factor alpha (TNF-α) in the case of CSD extracts over time, compared to extracts from VD infants for which no such changes were observed during the first year of life. Functional analyses of the VD metagenomes at 1 year of age demonstrate a significant increase in the biosynthesis of the natural antibiotics, carbapenem and phenazine. Concurrently, we find antimicrobial resistance (AMR) genes against several classes of antibiotics in both VD and CSD. The abundance of AMR genes against synthetic (including semi-synthetic) agents such as phenicol, pleuromutilin and diaminopyrimidine are increased in CSD children at day 5 after birth. In addition, we find that mobile genetic elements, including phages, encode AMR genes such as glycopeptide, diaminopyrimidine and multidrug resistance genes. Our results demonstrate persistent effects at 1 year of life resulting from birth mode-dependent differences in earliest gut microbiome colonisation. [less ▲]

Detailed reference viewed: 132 (17 UL)
Full Text
See detailGenotype-phenotype correlations in SCN8A-related disorders reveal prognostic and therapeutic implications
Johannesen, Katrine M.; Liu, Yuanyuan; Gjerulfsen, Cathrine E. et al

E-print/Working paper (2021)

We report detailed functional analyses and genotype-phenotype correlations in 433 individuals carrying disease-causing variants in SCN8A, encoding the voltage-gated Na+ channel NaV1.6. Five different ... [more ▼]

We report detailed functional analyses and genotype-phenotype correlations in 433 individuals carrying disease-causing variants in SCN8A, encoding the voltage-gated Na+ channel NaV1.6. Five different clinical subgroups could be identified: 1) Benign familial infantile epilepsy (BFIE) (n=17, normal cognition, treatable seizures), 2) intermediate epilepsy (n=36, mild ID, partially pharmacoresponsive), 3) developmental and epileptic encephalopathy (DEE, n=191, severe ID, majority pharmacoresistant), 4) generalized epilepsy (n=21, mild to moderate ID, frequently with absence seizures), and 5) affected individuals without epilepsy (n=25, mild to moderate ID). Groups 1-3 presented with early-onset (median: four months) focal or multifocal seizures and epileptic discharges, whereas the onset of seizures in group 4 was later (median: 39 months) with generalized epileptic discharges. The epilepsy was not classifiable in 143 individuals. We performed functional studies expressing missense variants in ND7/23 neuroblastoma cells and primary neuronal cultures using recombinant tetrodotoxin insensitive human NaV1.6 channels and whole-cell patch clamping. Two variants causing DEE showed a strong gain-of-function (GOF, hyperpolarising shift of steady-state activation, strongly increased neuronal firing rate), and one variant causing BFIE or intermediate epilepsy showed a mild GOF (defective fast inactivation, less increased firing). In contrast, all three variants causing generalized epilepsy induced a loss-of-function (LOF, reduced current amplitudes, depolarising shift of steady-state activation, reduced neuronal firing). Including previous studies, functional effects were known for 165 individuals. All 133 individuals carrying GOF variants had either focal (76, groups 1-3), or unclassifiable epilepsy (37), whereas 32 with LOF variants had either generalized (14), no (11) or unclassifiable (5) epilepsy; only two had DEE. Computational modeling in the GOF group revealed a significant correlation between the severity of the electrophysiological and clinical phenotypes. GOF variant carriers responded significantly better to sodium channel blockers (SCBs) than to other anti-seizure medications, and the same applied for all individuals of groups 1-3.In conclusion, our data reveal clear genotype-phenotype correlations between age at seizure onset, type of epilepsy and gain- or loss-of-function effects of SCN8A variants. Generalized epilepsy with absence seizures is the main epilepsy phenotype of LOF variant carriers and the extent of the electrophysiological dysfunction of the GOF variants is a main determinant of the severity of the clinical phenotype in focal epilepsies. Our pharmacological data indicate that SCBs present a therapeutic treatment option in early onset SCN8A-related focal epilepsy. [less ▲]

Detailed reference viewed: 250 (0 UL)
Full Text
Peer Reviewed
See detailReplication of a Novel Parkinson's Locus in a European Ancestry Population
Grover, Sandeep; Kumar-Sreelatha, Ashwin Ashok; Bobbili, Dheeraj R. et al

in Movement Disorders (2021)

ABSTRACT Background A recently published East Asian genome-wide association study of Parkinson;s disease (PD) reported 2 novel risk loci, SV2C and WBSCR17. Objectives The objective of this study were to ... [more ▼]

ABSTRACT Background A recently published East Asian genome-wide association study of Parkinson;s disease (PD) reported 2 novel risk loci, SV2C and WBSCR17. Objectives The objective of this study were to determine whether recently reported novel SV2C and WBSCR17 loci contribute to the risk of developing PD in European and East Asian ancestry populations. Methods We report an association analysis of recently reported variants with PD in the COURAGE-PD cohort (9673 PD patients; 8465 controls) comprising individuals of European and East Asian ancestries. In addition, publicly available summary data (41,386 PD patients; 476,428 controls) were pooled. Results Our findings confirmed the role of the SV2C variant in PD pathogenesis (rs246814, COURAGE-PD PEuropean = 6.64 × 10−4, pooled PD P = 1.15 × 10−11). The WBSCR17 rs9638616 was observed as a significant risk marker in the East Asian pooled population only (P = 1.16 × 10−8). Conclusions Our comprehensive study provides an up-to-date summary of recently detected novel loci in different PD populations and confirmed the role of SV2C locus as a novel risk factor for PD irrespective of the population or ethnic group analyzed. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society [less ▲]

Detailed reference viewed: 52 (2 UL)
Full Text
Peer Reviewed
See detailStatistical and Machine Learning Techniques in Human Microbiome Studies: Contemporary Challenges and Solutions
Moreno-Indias, Isabel; Lahti, Leo; Nedyalkova, Miroslava et al

in Frontiers in Microbiology (2021), 12

The human microbiome has emerged as a central research topic in human biology and biomedicine. Current microbiome studies generate high-throughput omics data across different body sites, populations, and ... [more ▼]

The human microbiome has emerged as a central research topic in human biology and biomedicine. Current microbiome studies generate high-throughput omics data across different body sites, populations, and life stages. Many of the challenges in microbiome research are similar to other high-throughput studies, the quantitative analyses need to address the heterogeneity of data, specific statistical properties, and the remarkable variation in microbiome composition across individuals and body sites. This has led to a broad spectrum of statistical and machine learning challenges that range from study design, data processing, and standardization to analysis, modeling, cross-study comparison, prediction, data science ecosystems, and reproducible reporting. Nevertheless, although many statistics and machine learning approaches and tools have been developed, new techniques are needed to deal with emerging applications and the vast heterogeneity of microbiome data. We review and discuss emerging applications of statistical and machine learning techniques in human microbiome studies and introduce the COST Action CA18131 “ML4Microbiome” that brings together microbiome researchers and machine learning experts to address current challenges such as standardization of analysis pipelines for reproducibility of data analysis results, benchmarking, improvement, or development of existing and new tools and ontologies. [less ▲]

Detailed reference viewed: 77 (2 UL)
Full Text
Peer Reviewed
See detailPathoFact: a pipeline for the prediction of virulence factors and antimicrobial resistance genes in metagenomic data
de Nies, Laura UL; Lopes, Sara; Busi, Susheel Bhanu UL et al

in Microbiome (2021)

Background Pathogenic microorganisms cause disease by invading, colonizing, and damaging their host. Virulence factors including bacterial toxins contribute to pathogenicity. Additionally, antimicrobial ... [more ▼]

Background Pathogenic microorganisms cause disease by invading, colonizing, and damaging their host. Virulence factors including bacterial toxins contribute to pathogenicity. Additionally, antimicrobial resistance genes allow pathogens to evade otherwise curative treatments. To understand causal relationships between microbiome compositions, functioning, and disease, it is essential to identify virulence factors and antimicrobial resistance genes in situ. At present, there is a clear lack of computational approaches to simultaneously identify these factors in metagenomic datasets. Results Here, we present PathoFact, a tool for the contextualized prediction of virulence factors, bacterial toxins, and antimicrobial resistance genes with high accuracy (0.921, 0.832 and 0.979, respectively) and specificity (0.957, 0.989 and 0.994). We evaluate the performance of PathoFact on simulated metagenomic datasets and perform a comparison to two other general workflows for the analysis of metagenomic data. PathoFact outperforms all existing workflows in predicting virulence factors and toxin genes. It performs comparably to one pipeline regarding the prediction of antimicrobial resistance while outperforming the others. We further demonstrate the performance of PathoFact on three publicly available case-control metagenomic datasets representing an actual infection as well as chronic diseases in which either pathogenic potential or bacterial toxins are hypothesized to play a role. In each case, we identify virulence factors and AMR genes which differentiated between the case and control groups, thereby revealing novel gene associations with the studied diseases. Conclusion PathoFact is an easy-to-use, modular, and reproducible pipeline for the identification of virulence factors, bacterial toxins, and antimicrobial resistance genes in metagenomic data. Additionally, our tool combines the prediction of these pathogenicity factors with the identification of mobile genetic elements. This provides further depth to the analysis by considering the genomic context of the pertinent genes. Furthermore, PathoFact’s modules for virulence factors, toxins, and antimicrobial resistance genes can be applied independently, thereby making it a flexible and versatile tool. PathoFact, its models, and databases are freely available at https://pathofact.lcsb.uni.lu. [less ▲]

Detailed reference viewed: 127 (5 UL)
Full Text
Peer Reviewed
See detailGenome sequencing analysis identifies new loci associated with Lewy body dementia and provides insights into its genetic architecture
Chia, Ruth; Sabir, Marya S.; Bandres-Ciga, Sara et al

in Nature Genetics (2021)

The genetic basis of Lewy body dementia (LBD) is not well understood. Here, we performed whole-genome sequencing in large cohorts of LBD cases and neurologically healthy controls to study the genetic ... [more ▼]

The genetic basis of Lewy body dementia (LBD) is not well understood. Here, we performed whole-genome sequencing in large cohorts of LBD cases and neurologically healthy controls to study the genetic architecture of this understudied form of dementia, and to generate a resource for the scientific community. Genome-wide association analysis identified five independent risk loci, whereas genome-wide gene-aggregation tests implicated mutations in the gene GBA. Genetic risk scores demonstrate that LBD shares risk profiles and pathways with Alzheimer’s disease and Parkinson’s disease, providing a deeper molecular understanding of the complex genetic architecture of this age-related neurodegenerative condition. [less ▲]

Detailed reference viewed: 91 (3 UL)
Full Text
Peer Reviewed
See detailPathogenic Huntingtin Repeat Expansions in Patients with Frontotemporal Dementia and Amyotrophic Lateral Sclerosis.
Dewan, Ramita; Chia, Ruth; Ding, Jinhui et al

in Neuron (2021), 109(3), 448-460

We examined the role of repeat expansions in the pathogenesis of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) by analyzing whole-genome sequence data from 2,442 FTD/ALS patients ... [more ▼]

We examined the role of repeat expansions in the pathogenesis of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) by analyzing whole-genome sequence data from 2,442 FTD/ALS patients, 2,599 Lewy body dementia (LBD) patients, and 3,158 neurologically healthy subjects. Pathogenic expansions (range, 40-64 CAG repeats) in the huntingtin (HTT) gene were found in three (0.12%) patients diagnosed with pure FTD/ALS syndromes but were not present in the LBD or healthy cohorts. We replicated our findings in an independent collection of 3,674 FTD/ALS patients. Postmortem evaluations of two patients revealed the classical TDP-43 pathology of FTD/ALS, as well as huntingtin-positive, ubiquitin-positive aggregates in the frontal cortex. The neostriatal atrophy that pathologically defines Huntington's disease was absent in both cases. Our findings reveal an etiological relationship between HTT repeat expansions and FTD/ALS syndromes and indicate that genetic screening of FTD/ALS patients for HTT repeat expansions should be considered. [less ▲]

Detailed reference viewed: 49 (4 UL)
Full Text
Peer Reviewed
See detailCritical Assessment of MetaProteome Investigation (CAMPI): a multi-laboratory comparison of established workflows
Van Den Bossche, Tim; Kunath, Benoît UL; Schallert, Kay et al

in Nature Communications (2021), 12(1), 7305

Abstract Metaproteomics has matured into a powerful tool to assess functional interactions in microbial communities. While many metaproteomic workflows are available, the impact of method choice on ... [more ▼]

Abstract Metaproteomics has matured into a powerful tool to assess functional interactions in microbial communities. While many metaproteomic workflows are available, the impact of method choice on results remains unclear. Here, we carry out a community-driven, multi-laboratory comparison in metaproteomics: the critical assessment of metaproteome investigation study (CAMPI). Based on well-established workflows, we evaluate the effect of sample preparation, mass spectrometry, and bioinformatic analysis using two samples: a simplified, laboratory-assembled human intestinal model and a human fecal sample. We observe that variability at the peptide level is predominantly due to sample processing workflows, with a smaller contribution of bioinformatic pipelines. These peptide-level differences largely disappear at the protein group level. While differences are observed for predicted community composition, similar functional profiles are obtained across workflows. CAMPI demonstrates the robustness of present-day metaproteomics research, serves as a template for multi-laboratory studies in metaproteomics, and provides publicly available data sets for benchmarking future developments. [less ▲]

Detailed reference viewed: 50 (0 UL)
Full Text
Peer Reviewed
See detailRoles of bacteriophages, plasmids and CRISPR immunity in microbial community dynamics revealed using time-series integrated meta-omics
Martinez Arbas, Susana UL; Narayanasamy, Shaman UL; Herold, Malte et al

in Nature Microbiology (2021), 6(1), 123--135

Viruses and plasmids (invasive mobile genetic elements (iMGEs)) have important roles in shaping microbial communities, but their dynamic interactions with CRISPR-based immunity remain unresolved. We ... [more ▼]

Viruses and plasmids (invasive mobile genetic elements (iMGEs)) have important roles in shaping microbial communities, but their dynamic interactions with CRISPR-based immunity remain unresolved. We analysed generation-resolved iMGE–host dynamics spanning one and a half years in a microbial consortium from a biological wastewater treatment plant using integrated meta-omics. We identified 31 bacterial metagenome-assembled genomes encoding complete CRISPR–Cas systems and their corresponding iMGEs. CRISPR-targeted plasmids outnumbered their bacteriophage counterparts by at least fivefold, highlighting the importance of CRISPR-mediated defence against plasmids. Linear modelling of our time-series data revealed that the variation in plasmid abundance over time explained more of the observed community dynamics than phages. Community-scale CRISPR-based plasmid–host and phage–host interaction networks revealed an increase in CRISPR-mediated interactions coinciding with a decrease in the dominant ‘Candidatus Microthrix parvicella’ population. Protospacers were enriched in sequences targeting genes involved in the transmission of iMGEs. Understanding the factors shaping the fitness of specific populations is necessary to devise control strategies for undesirable species and to predict or explain community-wide phenotypes. [less ▲]

Detailed reference viewed: 16 (1 UL)
See detailMobilome-driven segregation of the resistome in biological wastewater treatment 2021.11.15.468621
de Nies, Laura UL; Busi, Susheel Bhanu UL; Kunath, Benoit Josef et al

E-print/Working paper (2021)

Biological wastewater treatment plants (BWWTP) are considered to be hotspots of evolution and subsequent spread of antimicrobial resistance (AMR). Mobile genetic elements (MGEs) promote the mobilization ... [more ▼]

Biological wastewater treatment plants (BWWTP) are considered to be hotspots of evolution and subsequent spread of antimicrobial resistance (AMR). Mobile genetic elements (MGEs) promote the mobilization and dissemination of antimicrobial resistance genes (ARGs) and are thereby critical mediators of AMR within the BWWTP microbial community. At present, it is unclear whether specific AMR categories are differentially disseminated via bacteriophages (phages) or plasmids. To understand the segregation of AMR in relation to MGEs, we analyzed meta-omic (metagenomic, metatranscriptomic and metaproteomic) data systematically collected over 1.5 years from a BWWTP. Our results showed a core group of fifteen AMR categories which were found across all timepoints. Some of these AMR categories were disseminated exclusively (bacitracin) or primarily (aminoglycoside, MLS, sulfonamide) via plasmids or phages (fosfomycin and peptide), whereas others were disseminated equally by both MGEs. Subsequent expression- and protein-level analyses further demonstrated that aminoglycoside, bacitracin and sulfonamide resistance genes were expressed more by plasmids, in contrast to fosfomycin and peptide AMR expression by phages, thereby validating our genomic findings. Longitudinal assessment further underlined these findings whereby the log2-fold changes of aminoglycoside, bacitracin and sulfonamide resistance genes were increased in plasmids, while fosfomycin and peptide resistance showed similar trends in phages. In the analyzed communities, the dominant taxon Candidatus Microthrix parvicella was a major contributor to several AMR categories whereby its plasmids primarily mediated aminoglycoside resistance. Importantly, we also found AMR associated with ESKAPEE pathogens within the BWWTP, for which MGEs also contributed differentially to the dissemination of ARGs. Collectively our findings pave the way towards understanding the segmentation of AMR within MGEs, thereby shedding new light on resistome populations and their mediators, essential elements that are of immediate relevance to human health.Competing Interest StatementThe authors have declared no competing interest. [less ▲]

Detailed reference viewed: 72 (8 UL)
Full Text
Peer Reviewed
See detailGenome-wide linkage analysis of families with primary hyperhidrosis
Schote, Andrea B.; Schiel, Florian; Schmitt, Benedict et al

in PLoS ONE (2020)

Primary focal hyperhidrosis (PFH, OMIM %144110) is a genetically influenced condition characterised by excessive sweating. Prevalence varies between 1.0–6.1% in the general population, dependent on ... [more ▼]

Primary focal hyperhidrosis (PFH, OMIM %144110) is a genetically influenced condition characterised by excessive sweating. Prevalence varies between 1.0–6.1% in the general population, dependent on ethnicity. The aetiology of PFH remains unclear but an autosomal dominant mode of inheritance, incomplete penetrance and variable phenotypes have been reported. In our study, nine pedigrees (50 affected, 53 non-affected individuals) were included. Clinical characterisation was performed at the German Hyperhidrosis Centre, Munich, by using physiological and psychological questionnaires. Genome-wide parametric linkage analysis with GeneHunter was performed based on the Illumina genome-wide SNP arrays. Haplotypes were constructed using easyLINKAGE and visualised via HaploPainter. Whole-exome sequencing (WES) with 100x coverage in 31 selected members (24 affected, 7 non-affected) from our pedigrees was achieved by next generation sequencing. We identified four genome-wide significant loci, 1q41-1q42.3, 2p14-2p13.3, 2q21.2-2q23.3 and 15q26.3-15q26.3 for PFH. Three pedigrees map to a shared locus at 2q21.2-2q23.3, with a genome-wide significant LOD score of 3.45. The chromosomal region identified here overlaps with a locus at chromosome 2q22.1-2q31.1 reported previously. Three families support 1q41-1q42.3 (LOD = 3.69), two families share a region identical by descent at 2p14-2p13.3 (LOD = 3.15) and another two families at 15q26.3 (LOD = 3.01). Thus, our results point to considerable genetic heterogeneity. WES did not reveal any causative variants, suggesting that variants or mutations located outside the coding regions might be involved in the molecular pathogenesis of PFH. We suggest a strategy based on whole-genome or targeted next generation sequencing to identify causative genes or variants for PFH. [less ▲]

Detailed reference viewed: 91 (0 UL)
Full Text
Peer Reviewed
See detailRoles of bacteriophages, plasmids and CRISPR immunity in microbial community dynamics revealed using time-series integrated meta-omics
Martinez Arbas, Susana UL; Narayanasamy, Shaman; Herold, Malte et al

in Nature Microbiology (2020)

Viruses and plasmids (invasive mobile genetic elements (iMGEs)) have important roles in shaping microbial communities, but their dynamic interactions with CRISPR-based immunity remain unresolved. We ... [more ▼]

Viruses and plasmids (invasive mobile genetic elements (iMGEs)) have important roles in shaping microbial communities, but their dynamic interactions with CRISPR-based immunity remain unresolved. We analysed generation-resolved iMGE–host dynamics spanning one and a half years in a microbial consortium from a biological wastewater treatment plant using integrated meta-omics. We identified 31 bacterial metagenome-assembled genomes encoding complete CRISPR–Cas systems and their corresponding iMGEs. CRISPR-targeted plasmids outnumbered their bacteriophage counterparts by at least fivefold, highlighting the importance of CRISPR-mediated defence against plasmids. Linear modelling of our time-series data revealed that the variation in plasmid abundance over time explained more of the observed community dynamics than phages. Community-scale CRISPR-based plasmid–host and phage–host interaction networks revealed an increase in CRISPR-mediated interactions coinciding with a decrease in the dominant ‘Candidatus Microthrix parvicella’ population. Protospacers were enriched in sequences targeting genes involved in the transmission of iMGEs. Understanding the factors shaping the fitness of specific populations is necessary to devise control strategies for undesirable species and to predict or explain community-wide phenotypes. [less ▲]

Detailed reference viewed: 150 (9 UL)
Full Text
Peer Reviewed
See detailComprehensive characterization of amino acidpositions in protein structures reveals moleculareffect of missense variants
iqbal, Sumaiya; Perez-Palma, Eduardo; Jespersen, Jakob B. et al

in Proceedings of the National Academy of Sciences of the United States of America (2020)

Interpretation of the colossal number of genetic variants identified from sequencing applications is one of the major bottlenecks in clinical genetics, with the inference of the effect of amino acid ... [more ▼]

Interpretation of the colossal number of genetic variants identified from sequencing applications is one of the major bottlenecks in clinical genetics, with the inference of the effect of amino acid-substituting missense variations on protein structure and function being especially challenging. Here we characterize the three-dimensional (3D) amino acid positions affected in pathogenic and population variants from 1,330 disease-associated genes using over 14,000 experimentally solved human protein structures. By measuring the statistical burden of variations (i.e., point mutations) from all genes on 40 3D protein features, accounting for the structural, chemical, and functional context of the variations’ positions, we identify features that are generally associated with pathogenic and population missense variants. We then perform the same amino acid-level analysis individually for 24 protein functional classes, which reveals unique characteristics of the positions of the altered amino acids: We observe up to 46% divergence of the class-specific features from the general characteristics obtained by the analysis on all genes, which is consistent with the structural diversity of essential regions across different protein classes. We demonstrate that the function-specific 3D features of the variants match the readouts of mutagenesis experiments for BRCA1 and PTEN, and positively correlate with an independent set of clinically interpreted pathogenic and benign missense variants. Finally, we make our results available through a web server to foster accessibility and downstream research. Our findings represent a crucial step toward translational genetics, from highlighting the impact of mutations on protein structure to rationalizing the variants’ pathogenicity in terms of the perturbed molecular mechanisms. [less ▲]

Detailed reference viewed: 99 (1 UL)
Full Text
Peer Reviewed
See detailIntegration of time-series meta-omics data reveals how microbial ecosystems respond to disturbance
Herold, Malte; Martinez Arbas, Susana UL; Narayanasamy, Shaman et al

in Nature Communications (2020)

The development of reliable, mixed-culture biotechnological processes hinges on understanding how microbial ecosystems respond to disturbances. Here we reveal extensive phenotypic plasticity and niche ... [more ▼]

The development of reliable, mixed-culture biotechnological processes hinges on understanding how microbial ecosystems respond to disturbances. Here we reveal extensive phenotypic plasticity and niche complementarity in oleaginous microbial populations from a biological wastewater treatment plant. We perform meta-omics analyses (metagenomics, metatranscriptomics, metaproteomics and metabolomics) on in situ samples over 14 months at weekly intervals. Based on 1,364 de novo metagenome-assembled genomes, we uncover four distinct fundamental niche types. Throughout the time-series, we observe a major, transient shift in community structure, coinciding with substrate availability changes. Functional omics data reveals extensive variation in gene expression and substrate usage amongst community members. Ex situ bioreactor experiments confirm that responses occur within five hours of a pulse disturbance, demonstrating rapid adaptation by specific populations. Our results show that community resistance and resilience are a function of phenotypic plasticity and niche complementarity, and set the foundation for future ecological engineering efforts. [less ▲]

Detailed reference viewed: 181 (21 UL)
Full Text
Peer Reviewed
See detailPatient-derived organoids and orthotopic xenografts of primary and recurrent gliomas represent relevant patient avatars for precision oncology.
Golebiewska, Anna UL; Hau, Ann-Christin; Oudin, Anaïs et al

in Acta Neuropathologica (2020)

Patient-based cancer models are essential tools for studying tumor biology and for the assessment of drug responses in a translational context. We report the establishment a large cohort of unique ... [more ▼]

Patient-based cancer models are essential tools for studying tumor biology and for the assessment of drug responses in a translational context. We report the establishment a large cohort of unique organoids and patient-derived orthotopic xenografts (PDOX) of various glioma subtypes, including gliomas with mutations in IDH1, and paired longitudinal PDOX from primary and recurrent tumors of the same patient. We show that glioma PDOXs enable long-term propagation of patient tumors and represent clinically relevant patient avatars that retain histopathological, genetic, epigenetic, and transcriptomic features of parental tumors. We find no evidence of mouse-specific clonal evolution in glioma PDOXs. Our cohort captures individual molecular genotypes for precision medicine including mutations in IDH1, ATRX, TP53, MDM2/4, amplification of EGFR, PDGFRA, MET, CDK4/6, MDM2/4, and deletion of CDKN2A/B, PTCH, and PTEN. Matched longitudinal PDOX recapitulate the limited genetic evolution of gliomas observed in patients following treatment. At the histological level, we observe increased vascularization in the rat host as compared to mice. PDOX-derived standardized glioma organoids are amenable to high-throughput drug screens that can be validated in mice. We show clinically relevant responses to temozolomide (TMZ) and to targeted treatments, such as EGFR and CDK4/6 inhibitors in (epi)genetically defined subgroups, according to MGMT promoter and EGFR/CDK status, respectively. Dianhydrogalactitol (VAL-083), a promising bifunctional alkylating agent in the current clinical trial, displayed high therapeutic efficacy, and was able to overcome TMZ resistance in glioblastoma. Our work underscores the clinical relevance of glioma organoids and PDOX models for translational research and personalized treatment studies and represents a unique publicly available resource for precision oncology. [less ▲]

Detailed reference viewed: 170 (15 UL)