References of "May, Patrick 50002348"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailApplication of rare variant transmission disequilibrium tests to epileptic encephalopathy trio sequence data
Allen, Andrew S.; Berkovic, Samuel F.; Bridgers, Joshua et al

in European Journal of Human Genetics (2017)

The classic epileptic encephalopathies, including infantile spasms (IS) and Lennox–Gastaut syndrome (LGS), are severe seizure disorders that usually arise sporadically. De novo variants in genes mainly ... [more ▼]

The classic epileptic encephalopathies, including infantile spasms (IS) and Lennox–Gastaut syndrome (LGS), are severe seizure disorders that usually arise sporadically. De novo variants in genes mainly encoding ion channel and synaptic proteins have been found to account for over 15% of patients with IS or LGS. The contribution of autosomal recessive genetic variation, however, is less well understood. We implemented a rare variant transmission disequilibrium test (TDT) to search for autosomal recessive epileptic encephalopathy genes in a cohort of 320 outbred patient–parent trios that were generally prescreened for rare metabolic disorders. In the current sample, our rare variant transmission disequilibrium test did not identify individual genes with significantly distorted transmission over expectation after correcting for the multiple tests. While the rare variant transmission disequilibrium test did not find evidence of a role for individual autosomal recessive genes, our current sample is insufficiently powered to assess the overall role of autosomal recessive genotypes in an outbred epileptic encephalopathy population. [less ▲]

Detailed reference viewed: 203 (10 UL)
Full Text
Peer Reviewed
See detailNeuroChip, an updated version of the NeuroX genotyping platform to rapidly screen for variants associated with neurological diseases
Blauwendraat, Cornelis; Faghri, Faraz; Pihlstrom, Lasse et al

in Neurobiology of Aging (2017)

Genetics has proven to be a powerful approach in neurodegenerative diseases research, resulting in the identification of numerous causal and risk variants. Previously, we introduced the NeuroX Illumina ... [more ▼]

Genetics has proven to be a powerful approach in neurodegenerative diseases research, resulting in the identification of numerous causal and risk variants. Previously, we introduced the NeuroX Illumina genotyping array, a fast and efficient genotyping platform designed for the investigation of genetic variation in neurodegenerative diseases. Here, we present its updated version, named NeuroChip. The NeuroChip is a low cost, custom-designed array containing a tagging variant backbone of about 306,670 variants complemented with a manually curated custom content comprised of 179,467 variants implicated in diverse neurological diseases, including Alzheimer’s disease, Parkinson’s disease, Lewy body dementia, amyotrophic lateral sclerosis, frontotemporal dementia, progressive supranuclear palsy, corticobasal degeneration and multiple system atrophy. The tagging backbone was chosen because of the low cost and good genome-wide resolution; the custom content can be combined with other backbones, like population or drug development arrays. Using the NeuroChip, we can accurately identify rare variants and impute over 5.3 million common SNPs from the latest release of the Haplotype Reference Consortium. In summary, we describe the design and usage of the NeuroChip array, and show its capability for detecting rare pathogenic variants in numerous neurodegenerative diseases. The NeuroChip has a more comprehensive and improved content, which makes it a reliable, high-throughput, cost-effective screening tool for genetic research and molecular diagnostics in neurodegenerative diseases. [less ▲]

Detailed reference viewed: 335 (68 UL)
Full Text
Peer Reviewed
See detailBiallelic Variants in OTUD6B Cause an Intellectual Disability Syndrome Associated with Seizures and Dysmorphic Features
Santiago-Sim, Teresa; Burrage, Lindsay C.; Ebstein, Frederic et al

in American Journal of Human Genetics (2017), 100(4), 676-688

Ubiquitination is a posttranslational modification that regulates many cellular processes including protein degradation, intracellular trafficking, cell signaling, and protein-protein interactions ... [more ▼]

Ubiquitination is a posttranslational modification that regulates many cellular processes including protein degradation, intracellular trafficking, cell signaling, and protein-protein interactions. Deubiquitinating enzymes (DUBs), which reverse the process of ubiquitination, are important regulators of the ubiquitin system. OTUD6B encodes a member of the ovarian tumor domain (OTU)-containing subfamily of deubiquitinating enzymes. Herein, we report biallelic pathogenic variants in OTUD6B in 12 individuals from 6 independent families with an intellectual disability syndrome associated with seizures and dysmorphic features. In subjects with predicted loss-of-function alleles, additional features include global developmental delay, microcephaly, absent speech, hypotonia, growth retardation with prenatal onset, feeding difficulties, structural brain abnormalities, congenital malformations including congenital heart disease, and musculoskeletal features. Homozygous Otud6b knockout mice were subviable, smaller in size, and had congenital heart defects, consistent with the severity of loss-of-function variants in humans. Analysis of peripheral blood mononuclear cells from an affected subject showed reduced incorporation of 19S subunits into 26S proteasomes, decreased chymotrypsin-like activity, and accumulation of ubiquitin-protein conjugates. Our findings suggest a role for OTUD6B in proteasome function, establish that defective OTUD6B function underlies a multisystemic human disorder, and provide additional evidence for the emerging relationship between the ubiquitin system and human disease. [less ▲]

Detailed reference viewed: 156 (2 UL)
Full Text
Peer Reviewed
See detailRecessive mutations in SLC35A3 cause early onset epileptic encephalopathy with skeletal defects
Marini, Carla; Hardies, Katia; Pisano, Tiziana et al

in American Journal of Medical Genetics. Part A (2017), 173(4), 1119-1123

We describe the clinical and whole genome sequencing (WGS) study of a non-consanguineous Italian family in which two siblings, a boy and a girl, manifesting a severe epileptic encephalopathy (EE) with ... [more ▼]

We describe the clinical and whole genome sequencing (WGS) study of a non-consanguineous Italian family in which two siblings, a boy and a girl, manifesting a severe epileptic encephalopathy (EE) with skeletal abnormalities, carried novel SLC35A3 compound heterozy- gous mutations. Both siblings exhibited infantile spasms, associated with focal, and tonic vibratory seizures from early infancy. EEG recordings showed a suppression-burst (SB) pattern and multifocal paroxysmal activity in both. In addition both had quadriplegia, acquired microcephaly, and severe intellectual disability. General examination showed distal arthrog- ryposis predominant in the hands in both siblings and severe left dorso-lumbar convex scoliosis in one. WGS of the siblings-parents quartet identified novel compound heterozygous mutations in SLC35A3 in both children. SLC35A3 encodes the major Golgi uridine diphosphate N-acetylglucosamine transporter. With this study, we add SLC35A3 to the gene list of epilepsies. Neurological symptoms and skeletal abnormalities might result from impaired glycosylation of proteins involved in normal development and function of the central nervous system and skeletal apparatus. [less ▲]

Detailed reference viewed: 162 (10 UL)
Full Text
Peer Reviewed
See detailDe Novo Mutations in Synaptic Transmission Genes Including DNM1 Cause Epileptic Encephalopathies.
Appenzeller, Silke; Balling, Rudi UL; Barisic, Nina et al

in American Journal of Human Genetics (2017), 100(1), 179-

In the list of consortium members for the Epilepsy Phenome/Genome Project, member Dina Amrom’s name was misspelled as Amron. The authors regret the error.

Detailed reference viewed: 169 (3 UL)
Full Text
See detailReassessment Of Lesion-Associated Gene And Variant Pathogenicity In Focal Human Epilepsies
Neupert, Lisa Marie; Nothnagel, Michael; May, Patrick UL et al

E-print/Working paper (2017)

Purpose: Increasing availability of surgically resected brain tissue from Focal Cortical Dysplasia and low-grade epilepsy-associated tumor patients fostered large-scale genetic examination. However ... [more ▼]

Purpose: Increasing availability of surgically resected brain tissue from Focal Cortical Dysplasia and low-grade epilepsy-associated tumor patients fostered large-scale genetic examination. However, assessment of germline and somatic variant pathogenicity remains difficult. Methods: Here, we critically reevaluated the pathogenicity for all neuropathology-associated variants reported to date in the PubMed and ClinVar databases, including 12 disease-related genes and 88 neuropathology-associated missense variants. We (1) assessed evolutionary gene constraint using the pLI and missense z scores, (2) applied guidelines by the American College of Medical Genetics and Genomics (ACMG), and (3) predicted pathogenicity by using PolyPhen-2, CADD, and GERP. Results: Constraint analysis classified only seven out of 12 genes to be likely disease-associated, while 35 (40\%) of those 88 variants were classified as being variants of unknown significance (VUS) and 53 (60\%) as being likely pathogenic (LPII). Pathogenicity prediction yielded discrimination between neuropathology-associated variants (LPII and VUS) and rare variant scores obtained from individuals present in the Genome Aggregation Database (gnomAD). Conclusion: We conclude that several VUS are likely disease-associated and will be reclassified by future molecular evidence. In summary, interpretation of lesion-associated gene variants remains complex while the application of current ACMG guidelines including bioinformatic pathogenicity prediction will help improving interpretation and prediction. [less ▲]

Detailed reference viewed: 180 (4 UL)
Full Text
Peer Reviewed
See detailIDENTIFICATION OF A RARE GENE VARIANT THAT IS ASSOCIATED WITH FAMILIAL ALZHEIMER DISEASE AND REGULATES APP EXPRESSION
Hartl, Daniela; May, Patrick UL; Gu, Wei UL et al

in Alzheimer's and Dementia: the Journal of the Alzheimer's Association (2017), 13(7, Supplement), 648

Background Genetic mutations leading to familial forms of Alzheimer disease (AD) have so far been reported for a few genes including APP, PSEN1 and PSEN2, UNC5C, PLD3, ABCA7, TTC3, and possibly ADAM10 ... [more ▼]

Background Genetic mutations leading to familial forms of Alzheimer disease (AD) have so far been reported for a few genes including APP, PSEN1 and PSEN2, UNC5C, PLD3, ABCA7, TTC3, and possibly ADAM10. With the advent of whole exome and whole genome sequencing approaches new genes and mutations are likely to be identified. Methods We analyzed the genetic cause of AD in a large multiplex family with an autosomal-dominant pattern of inheritance with LOAD. The family lacked pathogenic mutations of known AD genes. We performed whole-genome sequencing (WGS) in six family members (two affected and four unaffected) and prioritized rare, potential damaging, variants that segregated with disease. Variants were further characterized by subsequent molecular analyzes in human brain and cell culture models. Results We identified a single rare nonsynonymous variant co-segregating with AD. The mutation inhibits pro-protein cleavage and the formation of the active enzyme, thus leading to a loss-of-function of the gene. We further found a strong negative correlation between the identified gene and APP gene expression in human brain and in cells over-expressing the gene. The negative regulation of APP expression was only observed for the wt gene, but not for mutated forms, thus causing beside the loss of enzyme function a decoupling of both APPexpression and subsequent beta-amyloid formation. The identity of the gene will be presented on the conference. Conclusions This novel pathway strongly supports a causative association of the identified gene with the pathogenesis of AD. [less ▲]

Detailed reference viewed: 276 (26 UL)
Full Text
Peer Reviewed
See detailIMP: a pipeline for reproducible referenceindependent integrated metagenomic and metatranscriptomic analyses
Narayanasamy, Shaman UL; Jarosz, Yohan UL; Muller, Emilie UL et al

in Genome Biology (2016), 17

Existing workflows for the analysis of multi-omic microbiome datasets are lab-specific and often result in sub-optimal data usage. Here we present IMP, a reproducible and modular pipeline for the ... [more ▼]

Existing workflows for the analysis of multi-omic microbiome datasets are lab-specific and often result in sub-optimal data usage. Here we present IMP, a reproducible and modular pipeline for the integrated and reference-independent analysis of coupled metagenomic and metatranscriptomic data. IMP incorporates robust read preprocessing, iterative co-assembly, analyses of microbial community structure and function, automated binning, as well as genomic signature-based visualizations. The IMP-based data integration strategy enhances data usage, output volume, and output quality as demonstrated using relevant use-cases. Finally, IMP is encapsulated within a user-friendly implementation using Python and Docker. IMP is available at http://r3lab.uni.lu/web/imp/ (MIT license). [less ▲]

Detailed reference viewed: 353 (24 UL)
Full Text
Peer Reviewed
See detailTargeted sequencing of 351 candidate genes for epileptic encephalopathy in a large cohort of patients
de Kovel, Carolien G.F.; Brilstra, Eva H.; van Kempen J.A. et al

in Molecular Genetics and Genomic Medicine (2016), 4(5), 568-80

Background Many genes are candidates for involvement in epileptic encephalopathy (EE) because one or a few possibly pathogenic variants have been found in patients, but insufficient genetic or functional ... [more ▼]

Background Many genes are candidates for involvement in epileptic encephalopathy (EE) because one or a few possibly pathogenic variants have been found in patients, but insufficient genetic or functional evidence exists for a definite annotation. Methods To increase the number of validated EE genes, we sequenced 26 known and 351 candidate genes for EE in 360 patients. Variants in 25 genes known to be involved in EE or related phenotypes were followed up in 41 patients. We prioritized the candidate genes, and followed up 31 variants in this prioritized subset of candidate genes. Results Twenty-nine genotypes in known genes for EE (19) or related diseases (10), dominant as well as recessive or X-linked, were classified as likely pathogenic variants. Among those, likely pathogenic de novo variants were found in EE genes that act dominantly, including the recently identified genes EEF1A2, KCNB1 and the X-linked gene IQSEC2. A de novo frameshift variant in candidate gene HNRNPU was the only de novo variant found among the followed-up candidate genes, and the patient's phenotype was similar to a few recent publications. Conclusion Mutations in genes described in OMIM as, for example, intellectual disability gene can lead to phenotypes that get classified as EE in the clinic. We confirmed existing literature reports that de novo loss-of-function HNRNPUmutations lead to severe developmental delay and febrile seizures in the first year of life. [less ▲]

Detailed reference viewed: 119 (3 UL)
Full Text
Peer Reviewed
See detailLoss of SYNJ1 dual phosphatase activity leads to early onset refractory seizures and progressive neurological decline
Hardies, Katia; Cai, Yiying; Jardel, Claude et al

in Brain : A Journal of Neurology (2016)

SYNJ1 encodes a polyphosphoinositide phosphatase, synaptojanin 1, which contains two consecutive phosphatase domains and plays a prominent role in synaptic vesicle dynamics. Autosomal recessive inherited ... [more ▼]

SYNJ1 encodes a polyphosphoinositide phosphatase, synaptojanin 1, which contains two consecutive phosphatase domains and plays a prominent role in synaptic vesicle dynamics. Autosomal recessive inherited variants in SYNJ1 have previously been associated with two different neurological diseases: a recurrent homozygous missense variant (p.Arg258Gln) that abolishes Sac1 phosphatase activity was identified in three independent families with early onset parkinsonism, whereas a homozygous nonsense variant (p.Arg136*) causing a severe decrease of mRNA transcript was found in a single patient with intractable epilepsy and tau pathology. We performed whole exome or genome sequencing in three independent sib pairs with early onset refractory seizures and progressive neurological decline, and identified novel segregating recessive SYNJ1 defects. A homozygous missense variant resulting in an amino acid substitution (p.Tyr888Cys) was found to impair, but not abolish, the dual phosphatase activity of SYNJ1, whereas three premature stop variants (homozygote p.Trp843* and compound heterozygote p.Gln647Argfs*6/p.Ser1122Thrfs*3) almost completely abolished mRNA transcript production. A genetic follow-up screening in a large cohort of 543 patients with a wide phenotypical range of epilepsies and intellectual disability revealed no additional pathogenic variants, showing that SYNJ1 deficiency is rare and probably linked to a specific phenotype. While variants leading to early onset parkinsonism selectively abolish Sac1 function, our results provide evidence that a critical reduction of the dual phosphatase activity of SYNJ1 underlies a severe disorder with neonatal refractory epilepsy and a neurodegenerative disease course. These findings further expand the clinical spectrum of synaptic dysregulation in patients with severe epilepsy, and emphasize the importance of this biological pathway in seizure pathophysiology. [less ▲]

Detailed reference viewed: 209 (5 UL)
Full Text
Peer Reviewed
See detailEvaluation of Presumably Disease Causing SCN1A Variants in a Cohort of Common Epilepsy Syndromes
Lal, Dennis; Reinthaler, Eva; Dejanovic et al

in PLoS ONE (2016)

Objective The SCN1A gene, coding for the voltage-gated Na+ channel alpha subunit NaV1.1, is the clinically most relevant epilepsy gene. With the advent of high-throughput next-generation sequencing ... [more ▼]

Objective The SCN1A gene, coding for the voltage-gated Na+ channel alpha subunit NaV1.1, is the clinically most relevant epilepsy gene. With the advent of high-throughput next-generation sequencing, clinical laboratories are generating an ever-increasing catalogue of SCN1A variants. Variants are more likely to be classified as pathogenic if they have already been identified previously in a patient with epilepsy. Here, we critically re-evaluate the pathogenicity of this class of variants in a cohort of patients with common epilepsy syndromes and subsequently ask whether a significant fraction of benign variants have been misclassified as pathogenic. Methods We screened a discovery cohort of 448 patients with a broad range of common genetic epilepsies and 734 controls for previously reported SCN1A mutations that were assumed to be disease causing. We re-evaluated the evidence for pathogenicity of the identified variants using in silico predictions, segregation, original reports, available functional data and assessment of allele frequencies in healthy individuals as well as in a follow up cohort of 777 patients. Results and Interpretation We identified 8 known missense mutations, previously reported as pathogenic, in a total of 17 unrelated epilepsy patients (17/448; 3.80%). Our re-evaluation indicates that 7 out of these 8 variants (p.R27T; p.R28C; p.R542Q; p.R604H; p.T1250M; p.E1308D; p.R1928G; NP_001159435.1) are not pathogenic. Only the p.T1174S mutation may be considered as a genetic risk factor for epilepsy of small effect size based on the enrichment in patients (P = 6.60 x 10−4; OR = 0.32, fishers exact test), previous functional studies but incomplete penetrance. Thus, incorporation of previous studies in genetic counseling of SCN1A sequencing results is challenging and may produce incorrect conclusions. [less ▲]

Detailed reference viewed: 244 (8 UL)
Full Text
Peer Reviewed
See detailThe new Protein Topology Graph Library web server
Schäfer, Tim; Bruneß, Daniel; Scheck, Andreas et al

in Bioinformatics (2016), 32(3), 474-6

Summary: We present a new, extended version of the Protein Topology Graph Library (PTGL) web server. The PTGL describes the protein topology on the super-secondary structure level. It allows to compute ... [more ▼]

Summary: We present a new, extended version of the Protein Topology Graph Library (PTGL) web server. The PTGL describes the protein topology on the super-secondary structure level. It allows to compute and visualize protein ligand graphs and search for protein structural motifs. The new server features additional information on ligand binding to secondary structure elements (SSEs), increased usability, and an application programming interface (API) to retrieve data, allowing for an automated analysis of protein topology. Availability: The PTGL server is freely available on the web at http://ptgl.uni-frankfurt.de. The website is implemented in PHP, JavaScript, PostgreSQL and Apache. It is supported by all major browsers. The VPLG software that was used to compute the protein ligand graphs and all other data in the database is available under the GNU public license 2.0 from http://vplg.sourceforge.net. [less ▲]

Detailed reference viewed: 368 (8 UL)
Full Text
Peer Reviewed
See detailIntegrated multi-omics of the human gut microbiome in a case study of familial type 1 diabetes.
Heintz, Anna UL; May, Patrick UL; Laczny, Cedric C. et al

in Nature Microbiology (2016), 2

The gastrointestinal microbiome is a complex ecosystem with functions that shape human health. Studying the relationship between taxonomic alterations and functional repercussions linked to disease ... [more ▼]

The gastrointestinal microbiome is a complex ecosystem with functions that shape human health. Studying the relationship between taxonomic alterations and functional repercussions linked to disease remains challenging. Here, we present an integrative approach to resolve the taxonomic and functional attributes of gastrointestinal microbiota at the metagenomic, metatranscriptomic and metaproteomic levels. We apply our methods to samples from four families with multiple cases of type 1 diabetes mellitus (T1DM). Analysis of intra- and inter-individual variation demonstrates that family membership has a pronounced effect on the structural and functional composition of the gastrointestinal microbiome. In the context of T1DM, consistent taxonomic differences were absent across families, but certain human exocrine pancreatic proteins were found at lower levels. The associated microbial functional signatures were linked to metabolic traits in distinct taxa. The methodologies and results provide a foundation for future large-scale integrated multi-omic analyses of the gastrointestinal microbiome in the context of host-microbe interactions in human health and disease. [less ▲]

Detailed reference viewed: 575 (30 UL)
Full Text
Peer Reviewed
See detailErratum: Integrated multi-omics of the human gut microbiome in a case study of familial type 1 diabetes.
Heintz, Anna UL; May, Patrick UL; Laczny, Cedric C. et al

in Nature Microbiology (2016), 2

Detailed reference viewed: 332 (23 UL)
Full Text
Peer Reviewed
See detailIdentification, recovery, and refinement of hitherto undescribed population-level genomes from the human gastrointestinal tract
Laczny, Cedric Christian UL; Muller, Emilie UL; Heintz, Anna UL et al

in Frontiers in Microbiology (2016), 7(884),

Linking taxonomic identity and functional potential at the population-level is important for the study of mixed microbial communities and is greatly facilitated by the availability of microbial reference ... [more ▼]

Linking taxonomic identity and functional potential at the population-level is important for the study of mixed microbial communities and is greatly facilitated by the availability of microbial reference genomes. While the culture-independent recovery of population-level genomes from environmental samples using the binning of metagenomic data has expanded available reference genome catalogs, several microbial lineages remain underrepresented. Here, we present two reference-independent approaches for the identification, recovery, and refinement of hitherto undescribed population-level genomes. The first approach is aimed at genome recovery of varied taxa and involves multi-sample automated binning using CANOPY CLUSTERING complemented by visualization and human-augmented binning using VIZBINpost hoc. The second approach is particularly well-suited for the study of specific taxa and employs VIZBINde novo. Using these approaches, we reconstructed a total of six population-level genomes of distinct and divergent representatives of the Alphaproteobacteria class, the Mollicutes class, the Clostridiales order, and the Melainabacteria class from human gastrointestinal tract-derived metagenomic data. Our results demonstrate that, while automated binning approaches provide great potential for large-scale studies of mixed microbial communities, these approaches should be complemented with informative visualizations because expert-driven inspection and refinements are critical for the recovery of high-quality population-level genomes. [less ▲]

Detailed reference viewed: 247 (16 UL)
See detail“Melanomics”: analysis and integration of whole genomes, transcriptomes and miRNomes of primary melanoma patients
Reinsbach, Susanne; Wienecke, Anke UL; Ginolhac, Aurélien UL et al

in European Journal of Cancer (2016), 61(Suppl.1), 32

Detailed reference viewed: 307 (25 UL)
Full Text
Peer Reviewed
See detailA novel Fanconi anemia subtype associated with a dominant-negative mutation in RAD51
Ameziane, Najim; May, Patrick UL; Van de Vrugt, Henri J. et al

in Nature Communications (2015), 6(8829),

Fanconi anemia (FA) is a hereditary disease featuring hypersensitivity to DNA cross-linker-induced chromosomal instability in association with developmental abnormalities, bone marrow failure and a strong ... [more ▼]

Fanconi anemia (FA) is a hereditary disease featuring hypersensitivity to DNA cross-linker-induced chromosomal instability in association with developmental abnormalities, bone marrow failure and a strong predisposition to cancer. 17 FA disease genes have been reported, all of which act in a recessive mode of inheritance. Here we report on a de novo g.41022153G>A; p.Ala293Thr (NM_002875) missense mutation in one allele of the homologous recombination DNA repair gene RAD51 in an FA-like patient. This heterozygous mutation causes a novel FA subtype, “FA-R”, which appears to be the first subtype of FA caused by a dominant-negative mutation. The patient, who features microcephaly and mental retardation, has reached adulthood without the typical bone marrow failure and pediatric cancers. Together with the recent reports on RAD51-associated congenital mirror movement disorders our results point to an important role for RAD51-mediated homologous recombination in neurodevelopment, in addition to DNA repair and cancer susceptibility. [less ▲]

Detailed reference viewed: 214 (21 UL)
Full Text
Peer Reviewed
See detailProteomic analysis of Dhh1 complexes reveals a role for Hsp40 chaperone Ydj1 in yeast P-body assembly
Cary, Greg A.; Vinh, Dani B.H.; May, Patrick UL et al

in G3 (2015)

P-bodies (PB) are ribonucleoprotein (RNP) complexes that aggregate into cytoplasmic foci when cells are exposed to stress. While the conserved mRNA decay and translational repression machineries are known ... [more ▼]

P-bodies (PB) are ribonucleoprotein (RNP) complexes that aggregate into cytoplasmic foci when cells are exposed to stress. While the conserved mRNA decay and translational repression machineries are known components of PB, how and why cells assemble RNP complexes into large foci remain unclear. Using mass spectrometry to analyze proteins immunoisolated with the core PB protein Dhh1, we show that a considerable number of proteins contain low-complexity (LC) sequences, similar to proteins highly represented in mammalian RNP granules. We also show that the Hsp40 chaperone Ydj1, which contains an LC domain and controls prion protein aggregation, is required for the formation of Dhh1-GFP foci upon glucose depletion. New classes of proteins that reproducibly coenrich with Dhh1-GFP during PB induction include proteins involved in nucleotide or amino acid metabolism, glycolysis, tRNA aminoacylation, and protein folding. Many of these proteins have been shown to form foci in response to other stresses. Finally, analysis of RNA associated with Dhh1-GFP shows enrichment of mRNA encoding the PB protein Pat1 and catalytic RNAs along with their associated mitochondrial RNA-binding proteins. Thus, global characterization of PB composition has uncovered proteins important for PB assembly and evidence suggesting an active role for RNA in PB function. [less ▲]

Detailed reference viewed: 140 (8 UL)
Full Text
Peer Reviewed
See detailRecessive mutations in SLC13A5 result in a loss of citrate transport and cause neonatal epilepsy, developmental delay and teeth hypoplasia
Hardies, Katia; de Kovel, Carolien G.F.; Weckhuysen, Sarah et al

in Brain : A Journal of Neurology (2015)

The epileptic encephalopathies are a clinically and aetiologically heterogeneous subgroup of epilepsy syndromes. Most epileptic encephalopathies have a genetic cause and patients are often found to carry ... [more ▼]

The epileptic encephalopathies are a clinically and aetiologically heterogeneous subgroup of epilepsy syndromes. Most epileptic encephalopathies have a genetic cause and patients are often found to carry a heterozygous de novo mutation in one of the genes associated with the disease entity. Occasionally recessive mutations are identified: a recent publication described a distinct neonatal epileptic encephalopathy (MIM 615905) caused by autosomal recessive mutations in the SLC13A5 gene. Here, we report eight additional patients belonging to four different families with autosomal recessive mutations in SLC13A5. SLC13A5 encodes a high affinity sodium-dependent citrate transporter, which is expressed in the brain. Neurons are considered incapable of de novo synthesis of tricarboxylic acid cycle intermediates; therefore they rely on the uptake of intermediates, such as citrate, to maintain their energy status and neurotransmitter production. The effect of all seven identified mutations (two premature stops and five amino acid substitutions) was studied in vitro, using immunocytochemistry, selective western blot and mass spectrometry. We hereby demonstrate that cells expressing mutant sodium-dependent citrate transporter have a complete loss of citrate uptake due to various cellular loss-of-function mechanisms. In addition, we provide independent proof of the involvement of autosomal recessive SLC13A5 mutations in the development of neonatal epileptic encephalopathies, and highlight teeth hypoplasia as a possible indicator for SLC13A5 screening. All three patients who tried the ketogenic diet responded well to this treatment, and future studies will allow us to ascertain whether this is a recurrent feature in this severe disorder. [less ▲]

Detailed reference viewed: 214 (8 UL)