References of "Martinez Luna, Carol 50040102"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailAutonomous control for satellite rendezvous in near-Earth orbits
Muralidharan, Vivek UL; Martinez Luna, Carol UL; Zinys, Augustinas et al

Scientific Conference (2022, July)

CubeSats are being deployed for a number of activities including Earth observation, telecommunications, scientific experiments, and due to their low cost and flexibility, more often than not, they are ... [more ▼]

CubeSats are being deployed for a number of activities including Earth observation, telecommunications, scientific experiments, and due to their low cost and flexibility, more often than not, they are even being considered for use in On-Orbit Servicing (OOS) and debris removal missions. This investigation focuses on using the CubeSat technology to perform autonomous proximity operations with passive target bodies including satellites or space debris. The nonlinear coupled attitude and orbit dynamics for the chaser and the target bodies are modelled and simulated. A nonlinear optimal controller identifies an appropriate rendezvous path. A vision-based navigation system on the chaser satellite records the pose of the target body. The pose observations with stochastic uncertainties are processed using a Kalman filter, and offer state feedback along the satellite path. Such observations in conjunction with the postulated linear control algorithm anchor the chaser to approach the target by maintaining appropriate relative configuration. The linear controller delivers regular maneuvers to compensate for any deviations from the identified reference path. A close-range rendezvous operation is illustrated in a Mission Design Simulator (MDS) tool. [less ▲]

Detailed reference viewed: 91 (17 UL)
Full Text
See detailEmulating Active Space Debris Removal Scenarios in Zero-G Lab
Li, Xiao UL; Hubert Delisle, Maxime UL; Yalcin, Baris Can UL et al

Presentation (2022, June 02)

Detailed reference viewed: 74 (26 UL)
Full Text
Peer Reviewed
See detailExploring NVIDIA Omniverse for Future Space Resources Missions
Li, Xiao UL; Yalcin, Baris Can UL; Christidi-Loumpasefski, Olga-Orsalia UL et al

Poster (2022, May 03)

The resources of space offer a means to enable sustainable exploration of the Moon and Solar System beyond, thus developing space resource technologies is becoming a major topic for space-related activity ... [more ▼]

The resources of space offer a means to enable sustainable exploration of the Moon and Solar System beyond, thus developing space resource technologies is becoming a major topic for space-related activity internationally. However, verifying and validating such systems on Earth conditions is challenging due to the difficulty of filling the sim2reality gap by creating the exact environment. We hypothesize that having on-ground experimental facilities that integrate high-fidelity simulation and physical systems will enable close-to-real testing, speeding up the transition between space technology development and deployment stages. NVIDIA Omniverse recently gained interest to create photorealistic environments, and it is a promising tool to simulate space-related scenarios with high fidelity. Physically accurate and faithful on-orbit scenarios could be generated in Omniverse Create by integrating PhysX physics core and Pixar Universal Scene Description. Omniverse also includes a robotic simulator that connects to physical robotic systems. Various connectors between Omniverse and other platforms such as Unreal Engine, Blender, Autodesk, ParaView, and online collaboration capacity offer the possibility of importing models of space mission components, space scenes, and scientific data into Omniverse. NVIDIA Omniverse seems auspicious in terms of developing high-fidelity photorealistic simulations. In the HELEN project between SpaceR and Spacety, we are developing a close-to-real testing environment for validating debris removal technology. Within this project, we will explore the potential of Omniverse to integrate virtual and physical components, i.e., high-fidelity photorealistic on-orbit simulations with the Zero-G lab facility, for creating reliable testing conditions to reduce the sim2reality gap. SIL and HIL testing architectures for space systems will be developed using software such as MATLAB/Simulink. Moreover, the robotic systems of the Zero-G lab can be linked to the Omniverse’s robotic simulator using its ROS & ROS2 bridge. The figure presents an overview of Omniverse under the scope of the HELEN project. HELEN will show the combination of photorealistic simulations using Omniverse, SIL, and HIL with the Zero-G lab creates a high-fidelity testing environment for future space resources technology. We also believe that the number of human-made objects orbiting the Earth constitutes a great potential for the recovery of their resources. Most of those include valuable materials (Aluminum, Gold, Silver). Therefore, in the future, debris mitigation efforts can target the recovery of such resources, as pointed out in [1]. Reference:[1] Frank Koch, The Value of Space Debris (2021), 8th European Conference on Space Debris [less ▲]

Detailed reference viewed: 100 (10 UL)
Full Text
Peer Reviewed
See detailThe Best Space Resource is the One You Can Catch and Reuse
Hubert Delisle, Maxime UL; Yalcin, Baris Can UL; Martinez Luna, Carol UL et al

Poster (2022, May 03)

From the beginning of space exploration more than 60 years ago, only a few in-orbit objects have been removed or reused. In fact, the Kessler Syndrome states that the number of space debris is growing ... [more ▼]

From the beginning of space exploration more than 60 years ago, only a few in-orbit objects have been removed or reused. In fact, the Kessler Syndrome states that the number of space debris is growing exponentially [1], leaving unused uncooperative objects orbiting at high velocities at several altitudes, especially in Low-Earth Orbit (LEO). In other words, the situation brings up two main critical issues: not only a non-sustainable space environment for satellite missions, with orbit saturation, but also the creation of an unsafe place for future human-related space exploration missions. Active Debris Removal is a possible solution for tackling the problem of space debris. Despite being extremely challenging, catching autonomously and harmlessly an uncooperative object tumbling at high velocity demands reliability, compliance and robustness. The fruitful collaboration between industry and academia (Spacety Luxembourg - SnT-SpaceR research group at the University of Luxembourg), is leading to the cutting-edge concept of a two-step capturing mechanism. A first ‘soft capture’ ensures that the debris is received softly while dampening any vibrations generated during the contact. Then, a ‘hard capture’ secures the debris so that it would be deorbited or safely shipped for other orbits or space stations for reuse. Capturing debris and decommissioned in-orbit objects for recycling or reusing can be the anchor of new opportunities in space and beyond. Most of the objects in orbit can have aluminum parts, besides other beneficial materials among their subsystems, such as solar panels, antennas or electronics which can be reused. To maximize space resources reusability, it is important to not harm the target. Capturing solutions such as harpoons or rigid interfaces can cause damage to the targets, resulting in hardly exploitable resources, and even more smaller debris tumbling in orbit [2]. An application of the proposed capturing technology would be to collect defunct satellites and debris, thus contributing to a more sustainable environment in space, gathering those on a possible recycling orbit or to any future Space Station for recycling. References [1] Drmola J. and Hubik T., Kessler Syndrome: System Dynamics Model (2018), In-Space Policy, 44–45, 29–39 [2] Zhao P., Liu J. and Wu C., Survey on Research and Development of On-Orbit Active Debris Removal Methods (2020), Sci China Tech Sci, 63: 2188–2210 [less ▲]

Detailed reference viewed: 99 (45 UL)
Full Text
Peer Reviewed
See detailET-Class, an Energy Transfer-based Classification of Space Debris Removal Methods and Missions
Yalcin, Baris Can UL; Martinez Luna, Carol UL; Hubert Delisle, Maxime UL et al

in Frontiers in Space Technologies (2022)

Space debris is positioned as a fatal problem for current and future space missions. Many e ective space debris removal methods have been proposed in the past decade, and several techniques have been ... [more ▼]

Space debris is positioned as a fatal problem for current and future space missions. Many e ective space debris removal methods have been proposed in the past decade, and several techniques have been either tested on the ground or in parabolic ight experiments. Nevertheless, no uncooperative debris has been removed from any orbit until this moment. Therefore, to expand this research eld and progress the development of space debris removal technologies, this paper reviews and compares the existing technologies with past, present, and future methods and missions. Moreover, since one of the critical problems when designing space debris removal solutions is how to transfer the energy between the chaser/de-orbiting kit and target during the rst interaction, this paper proposes a novel classi cation approach, named ET-Class (Energy Transfer Class). This classi cation approach provides an energy-based perspective to the space debris phenomenon by classifying how existing methods dissipate or store energy during rst contact. [less ▲]

Detailed reference viewed: 101 (26 UL)
Full Text
Peer Reviewed
See detailDeep Learning for Safe Human-Robot Collaboration
Duque, Nicolas; Mejia, Lina; Martinez Luna, Carol UL et al

in Advances in Automation and Robotics Research (2021, November 21)

Detailed reference viewed: 27 (1 UL)
Full Text
See detailHow to catch a space debris
Yalcin, Baris Can UL; Martinez Luna, Carol UL; Hubert Delisle, Maxime UL et al

Poster (2021, November 18)

The partnership between SpaceR and Spacety Luxembourg aims to develop cutting edge active space debris removal solutions that can be implemented into small cube sats The solution will take the advantage ... [more ▼]

The partnership between SpaceR and Spacety Luxembourg aims to develop cutting edge active space debris removal solutions that can be implemented into small cube sats The solution will take the advantage of latest advancements in many tech domains, such as gecko like sticky adhesives and energy efficient shape memory alloy materials. [less ▲]

Detailed reference viewed: 112 (42 UL)
Full Text
See detailProceedings of the 12th European CubeSatSymposium
Thoemel, Jan UL; Querol, Jorge UL; Bokal, Zhanna UL et al

in Proceedings of the 12th European CubeSatSymposium (2021, November 15)

Detailed reference viewed: 71 (16 UL)
Full Text
See detailTowards incremental autonomy framework for on-orbit vision-based grasping
Barad, Kuldeep Rambhai UL; Martinez Luna, Carol UL; Dentler, Jan et al

in Proceedings of the International Astronautical Congress, IAC-2021 (2021, October 29)

This work presents a software-oriented autonomy framework that enables the incremental development of high robotic autonomy. The autonomy infrastructure in space applications is often cost-driven and ... [more ▼]

This work presents a software-oriented autonomy framework that enables the incremental development of high robotic autonomy. The autonomy infrastructure in space applications is often cost-driven and built for a narrow time/complexity domain. In domains like On-orbit Servicing Assembly and Manufacturing (OSAM), this prevents scalability and generalizability, motivating a more consistent approach for the incremental development of robotic autonomy. For this purpose, the problem of vision-based grasping is described as a building block for high autonomy of dexterous space robots. Subsequently, the need for a framework is highlighted to enable bottom-up development of general autonomy with vision-based grasping as the starting point. The preliminary framework presented here comprises three components. First, an autonomy level classification provides a clear description of the autonomous behavior of the system. The stack abstraction provides a general classification of the development layers. Finally, the generic execution architecture condenses the flow of translating a high-level task description into real-world sense-planact routines. Overall, this work lays down foundational elements towards development of general robotic autonomy for scalablity in space application domains like OSAM. [less ▲]

Detailed reference viewed: 104 (17 UL)
Full Text
Peer Reviewed
See detailMachine learning for surgical time prediction
Martinez, Oscar; Martinez Luna, Carol UL; Parra, Carlos et al

in Computer Methods and Programs in Biomedicine (2021)

Detailed reference viewed: 44 (1 UL)
Full Text
Peer Reviewed
See detail5G-SpaceLab
Querol, Jorge UL; Abdalla, Abdelrahman UL; Bokal, Zhanna UL et al

Poster (2021, April 19)

The new phase of space exploration involves a growing number of human and robotic missions with varying communication and service requirements. Continuous, maximum coverage of areas where activities are ... [more ▼]

The new phase of space exploration involves a growing number of human and robotic missions with varying communication and service requirements. Continuous, maximum coverage of areas where activities are concentrated and orbiting missions (single spacecraft or constellations) around the Earth, Moon or Mars will be particularly challenging. The standardization of the 5G Non-Terrestrial Networks (NTN) has already begun [1], and nothing prevents 5G from becoming a common communications standard supporting space resource missions [2]. The 5G Space Communications Lab (5G-SpaceLab) is an interdisciplinary experimental platform, funded by the Luxembourg Space Agency and is part of the Space Research Program of SnT. The lab allows users to design and emulate realistic space communications and control scenarios for the next-generation of space applications. The capabilities of the 5G-SpaceLab testbed combine the experience of different disciplines including space communications, space and satellite mission design, and space robotics. The most relevant include the demonstration of SDR 5G NTN terminals including NB-IoT, emulation of space communications channel scenarios (e.g. link budget, delay, Doppler…), small satellite platform and payload design and testing, satellite swarm flight formation, lunar rover and robotic arm control and AI-powered telerobotics. Earth-Moon communications is one of the scenarios demonstrated in the 5G-SpaceLab. Bidirectional communication for the teleoperation of lunar rovers for near real-time operations including data collection and sensors feedback will be tested. AI-based approaches for perception and control will be developed to overcome communication delays and to provide safer, trustworthy, and efficient remote control of the rovers. [1] 3GPP Release 17 Timeline. [Online]. Available: https://www.3gpp.org/release-17 [2] Nokia, Nokia selected by NASA to build first ever cellular network on the Moon. [Online]. Available: https://www.nokia.com/about-us/news/releases/2020/10/19/nokia-selected-by-nasa-to-build-first-ever-cellular-network-on-the-moon/ [less ▲]

Detailed reference viewed: 400 (45 UL)
Full Text
Peer Reviewed
See detailSORA Methodology for Multi-UAS Airframe Inspections in an Airport
Martinez Luna, Carol UL; Sanchez Cuevas, Pedro Jesus UL; Gerasimou, Simos et al

in Drones (2021), 5(4 141),

Deploying Unmanned Aircraft Systems (UAS) in safety- and business-critical operations requires demonstrating compliance with applicable regulations and a comprehensive understanding of the residual risk ... [more ▼]

Deploying Unmanned Aircraft Systems (UAS) in safety- and business-critical operations requires demonstrating compliance with applicable regulations and a comprehensive understanding of the residual risk associated with the UAS operation. To support these activities and enable the safe deployment of UAS into civil airspace, the European Union Aviation Safety Agency (EASA) has established a UAS regulatory framework that mandates the execution of safety risk assessment for UAS operations in order to gain authorization to carry out certain types of operations. Driven by this framework, the Joint Authorities for Rulemaking on Unmanned Systems (JARUS) released the Specific Operation Risk Assessment (SORA) methodology that guides the systematic risk assessment for UAS operations. However, existing work on SORA and its applications focuses mainly on single UAS operations, offering limited support for assuring operations conducted with multiple UAS and with autonomous features. Therefore, the work presented in this paper analyzes the application of SORA for a Multi-UAS airframe inspection (AFI) operation, that involves deploying multiple UAS with autonomous features inside an airport. We present the decision-making process of each SORA step and its application to a multiple UAS scenario. The results shows that the procedures and safety features included in the Multi-AFI operation such as workspace segmentation, the independent multi-UAS AFI crew proposed, and the mitigation actions provide confidence that the operation can be conducted safely and can receive a positive evaluation from the competent authorities. We also present our key findings from the application of SORA and discuss how it can be extended to better support multi-UAS operations. [less ▲]

Detailed reference viewed: 63 (10 UL)
Full Text
Peer Reviewed
See detailHigh-throughput biomass estimation in rice crops using UAV multispectral imagery
Devia, Carlos A.; Rojas, Juan P.; Petro, Eliel et al

in Journal of Intelligent and Robotic Systems (2019), 96(3-4), 573--589

Detailed reference viewed: 34 (2 UL)
Full Text
Peer Reviewed
See detailSafety Protocol for Collaborative Human-Robot Recycling Tasks
Medina, Angie C.; Mora, Juan F.; Martinez Luna, Carol UL et al

in IFAC-PapersOnLine (2019), 52(13), 2008--2013

Detailed reference viewed: 26 (0 UL)
Full Text
Peer Reviewed
See detailA Collaborative Vacuum Tool for Humans and Robots
Hernandez, Wilson; Hilarion, Alvaro; Martinez Luna, Carol UL

in Proceedings of the Latin American Congress on Automation and Robotics (2019)

Detailed reference viewed: 28 (0 UL)
Full Text
Peer Reviewed
See detailA Fast Solution to the Dual Arm Robotic Sequencing Problem
Suárez-Ruiz, Francisco; Martinez Luna, Carol UL

in Advances in Automation and Robotics Research (2019)

Detailed reference viewed: 27 (0 UL)
Full Text
Peer Reviewed
See detailAerial mapping of rice crops using mosaicing techniques for vegetative index monitoring
Petro, E.; Martinez Luna, Carol UL; Mondragon, Ivan F. et al

in 2018 International Conference on Unmanned Aircraft Systems (ICUAS) (2018)

Detailed reference viewed: 28 (0 UL)