References of "Lagunas, Eva 50002156"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailJoint Beam-Hopping Scheduling and Power Allocation in NOMA-Assisted Satellite Systems
Wang, Anyue UL; Lei, Lei UL; Lagunas, Eva UL et al

Scientific Conference (2021, March 31)

In this paper, we investigate potential synergies of non-orthogonal multiple access (NOMA) and beam hopping (BH) for multi-beam satellite systems. The coexistence of BH and NOMA provides time-power-domain ... [more ▼]

In this paper, we investigate potential synergies of non-orthogonal multiple access (NOMA) and beam hopping (BH) for multi-beam satellite systems. The coexistence of BH and NOMA provides time-power-domain flexibilities in mitigating a practical mismatch effect between offered capacity and requested traffic per beam. We formulate the joint BH scheduling and NOMA-based power allocation problem as mixed-integer nonconvex programming. We reveal the xponential-conic structure for the original problem, and reformulate the problem to the format of mixed-integer conic programming (MICP), where the optimum can be obtained by exponential-complexity algorithms. A greedy scheme is proposed to solve the problem on a timeslot-by-timeslot basis with polynomial-time complexity. Numerical results show the effectiveness of the proposed efficient suboptimal algorithm in reducing the matching error by 62.57% in average over the OMA scheme and achieving a good trade-off between computational complexity and performance compared to the optimal solution. [less ▲]

Detailed reference viewed: 81 (22 UL)
Full Text
Peer Reviewed
See detailCompletion Time Minimization in NOMA Systems:Learning for Combinatorial Optimization
Wang, Anyue UL; Lei, Lei UL; Lagunas, Eva UL et al

in IEEE Networking Letters (2021)

In this letter, we study a completion-time minimization problem by jointly optimizing time slots (TSs) and power allocation for time-critical non-orthogonal multiple access (NOMA) systems. The original ... [more ▼]

In this letter, we study a completion-time minimization problem by jointly optimizing time slots (TSs) and power allocation for time-critical non-orthogonal multiple access (NOMA) systems. The original problem is non-linear/non-convex with discrete variables, leading to high computational complexity in conventional iterative methods. Towards an efficient solution, we train deep neural networks to perform fast and high-accuracy predictions to tackle the difficult combinatorial parts, i.e., determining the minimum consumed TSs and user-TS allocation. Based on the learning-based predictions, we develop a low-complexity post-process procedure to provide feasible power allocation. The numerical results demonstrate promising improvements of the proposed scheme compared to other baseline schemes in terms of computational efficiency, approximating optimum, and feasibility guarantee. [less ▲]

Detailed reference viewed: 84 (18 UL)
Full Text
Peer Reviewed
See detailFeasible Point Pursuit and Successive Convex Approximation for Transmit Power Minimization in SWIPT-Multigroup Multicasting Systems
Gautam, Sumit UL; Lagunas, Eva UL; Chatzinotas, Symeon UL et al

in IEEE Transactions on Green Communications and Networking (2021)

We consider three wireless multi-group (MG) multicasting (MC) systems capable of handling heterogeneous user types viz., information decoding (ID) specific users with conventional receiver architectures ... [more ▼]

We consider three wireless multi-group (MG) multicasting (MC) systems capable of handling heterogeneous user types viz., information decoding (ID) specific users with conventional receiver architectures, energy harvesting (EH) only users with non-linear EH module, and users with joint ID and EH capabilities having separate units for the two operations, respectively. Each user is categorized under unique group(s), which can be of MC type specifically meant for ID users, and/or an energy group consisting of EH explicit users. The joint ID and EH users are a part of both EH group and single MC group. We formulate an optimization problem to minimize the total transmit power with optimal precoder designs for the three aforementioned scenarios, under certain quality-of-service constraints. The problem may be adapted to the well-known semidefinite program and solved via relaxation of rank-1 constraint. However, this process leads to performance degradation in some cases, which increases with the rank of solution obtained from the relaxed problem. Hence, we develop a novel technique motivated by the feasible-point pursuit successive convex approximation method in order to address the rank-related issue. The benefits of proposed method are illustrated under various operating conditions and parameter values, with comparison between the three above-mentioned scenarios. [less ▲]

Detailed reference viewed: 102 (11 UL)
Full Text
Peer Reviewed
See detailClustering-based Adaptive Beam Footprint Design for 5G Urban Macro-Cell
Jubba Honnaiah, Puneeth UL; Lagunas, Eva UL; Maturo, Nicola et al

in 2021 IEEE 4th 5G World Forum (5GWF) - Track 1: 5G Technologies (2021)

In a dense 5G urban-eMBB environment, the user density and traffic loads follow a spatiotemporal variability. To meet high traffic demands, the 5G base stations exploit spatial multiplexing by means of ... [more ▼]

In a dense 5G urban-eMBB environment, the user density and traffic loads follow a spatiotemporal variability. To meet high traffic demands, the 5G base stations exploit spatial multiplexing by means of Active Antenna Systems (AAS) and beamforming. However, pedestrian and vehicular users are highly mobile, rendering non-dynamic beamforming designs totally inefficient in terms of meeting the users’ demand requests. In particular, the latter results in either overload or underutilized beams in a cell. Hence, a practical approach to meet such spatio-temporal heterogeneous demand is to consider dynamic and adaptive beam footprint design that takes into account both the actual users’ position as well as the traffic loads. In this paper, we first study and evaluate the state-of-the-art fixed cell beamforming (based on ITU-R M.2412-0) in a test environment and highlight its drawbacks. Next, we propose a adaptive macro-cell beam footprint design where the beams are dynamically shaped based on the spatial users distribution and their demand requests. Numerical simulations demonstrate the high system performance achieved by the proposed methodology. [less ▲]

Detailed reference viewed: 55 (3 UL)
Full Text
Peer Reviewed
See detailCentralized Gateway Concept for Precoded Multi-beam GEO Satellite Networks
Kisseleff, Steven UL; Lagunas, Eva UL; Krivochiza, Jevgenij et al

in VTC2021-Fall Workshop on Evolution of Non-Terrestrial Networks Toward 6G, Sept. 2021 (2021)

Detailed reference viewed: 48 (11 UL)
Full Text
Peer Reviewed
See detailPower and Bandwidth Minimization for Demand-Aware GEO Satellite Systems
Abdu, Tedros Salih UL; Kisseleff, Steven UL; Lagunas, Eva UL et al

Scientific Conference (2021)

Smart radio resource allocation combined with the recent advances of digital payloads will allow to control the transmit power and bandwidth of the satellites depending on the demand and the channel ... [more ▼]

Smart radio resource allocation combined with the recent advances of digital payloads will allow to control the transmit power and bandwidth of the satellites depending on the demand and the channel conditions of users. The system flexibility is important not only to handle divergent demand requirements but also to efficiently utilize the limited and expensive satellite resources. In this paper, we propose a demand-aware smart radio resource allocation technique, where the transmit power and the bandwidth of the GEO satellite are minimized while satisfying the user demand. The formulated optimization problem is non-convex mixed-integer nonlinear program which is difficult to solve. Hence, we apply a quadratic transform to solve the problem iteratively. The numerical results showed that the proposed scheme outperforms the benchmark schemes in terms of bandwidth utilization while accurately providing capacity-ondemand. [less ▲]

Detailed reference viewed: 35 (3 UL)
Full Text
See detailPrecoding-Aided Bandwidth Optimization for High Throughput Satellite Systems
Abdu, Tedros Salih UL; Lei, Lei UL; Kisseleff, Steven UL et al

Scientific Conference (2021)

Linear precoding boosts the spectral efficiency of the satellite system by mitigating the interference signal. Typically, all users are precoded and share the same bandwidth regardless of the user demand ... [more ▼]

Linear precoding boosts the spectral efficiency of the satellite system by mitigating the interference signal. Typically, all users are precoded and share the same bandwidth regardless of the user demand. This bandwidth utilization is not efficient since the user demand permanently varies. Hence, demand-aware bandwidth allocation with linear precoding is promising. In this paper, we exploited the synergy of linear precoding and flexible bandwidth allocation for geostationary (GEO) high throughput satellite systems. We formulate an optimization problem with the goal to satisfy the demand by taking into account that multiple precoded user groups can share the different bandwidth chunks. Hence, optimal beam groups are selected with minimum bandwidth requirement to match the per beam demand. The simulation results show that the proposed method of combining bandwidth allocation and linear precoding has better bandwidth efficiency and demand satisfaction than benchmark schemes. [less ▲]

Detailed reference viewed: 44 (6 UL)
Full Text
Peer Reviewed
See detailPrecoding for Satellite Communications: Why, How and What next?
Mysore Rama Rao, Bhavani Shankar UL; Lagunas, Eva UL; Chatzinotas, Symeon UL et al

in IEEE Communications Letters (2021)

Detailed reference viewed: 97 (10 UL)
Full Text
Peer Reviewed
See detailA Low-complexity Resource Optimization Technique for High Throughput Satellite
Abdu, Tedros Salih UL; Kisseleff, Steven UL; Lagunas, Eva UL et al

Scientific Conference (2021)

The high throughput satellites with flexible payloads are expected to provide a high data rate to satisfy the increasing traffic demand. Furthermore, the reconfiguration capability of flexible payloads ... [more ▼]

The high throughput satellites with flexible payloads are expected to provide a high data rate to satisfy the increasing traffic demand. Furthermore, the reconfiguration capability of flexible payloads opens the door to more advanced system optimization techniques and a better utilization of satellite resources. Consequently, we can obtain high demand satisfaction at the user side. For this, dynamically adaptive high-performance and low-complexity optimization algorithms are needed. In this paper, we propose a novel low-complexity resource optimization technique for geostationary (GEO) High Throughput Satellites. The proposed method minimizes the transmit power and the overall satellite bandwidth while satisfying the demand per beam. This optimization problem turns out to be non-convex. Hence, we convexify the problem using Dinkelbach method and Successive Convex Approximation (SCA). The simulation result shows that the proposed scheme provides better flexibility in resource allocation and requires less computational time compared to the state-of-art benchmark schemes. [less ▲]

Detailed reference viewed: 86 (22 UL)
Full Text
Peer Reviewed
See detailUser Scheduling for Precoded Satellite Systems With Individual Quality of Service Constraints
Trinh, van Chien UL; Lagunas, Eva UL; Tung, Ta Hai et al

in Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Virtual Conference, Sept. 2021 (2021)

Detailed reference viewed: 79 (6 UL)
Full Text
Peer Reviewed
See detailScheduling Design and Performance Analysis of Carrier Aggregation in Satellite Communication Systems
Al-Hraishawi, Hayder UL; Maturo, Nicola UL; Lagunas, Eva UL et al

in IEEE Transactions on Vehicular Technology (2021)

Carrier Aggregation is one of the vital approaches to achieve several orders of magnitude increase in peak data rates. While carrier aggregation benefits have been extensively studied in cellular networks ... [more ▼]

Carrier Aggregation is one of the vital approaches to achieve several orders of magnitude increase in peak data rates. While carrier aggregation benefits have been extensively studied in cellular networks, its application to satellite systems has not been thoroughly explored yet. Carrier aggregation can offer an enhanced and more consistent quality of service for users throughout the satellite coverage via combining multiple carriers, utilizing the unused capacity at other carriers, and enabling effective interference management. Furthermore, carrier aggregation can be a prominent solution to address the issue of the spatially heterogeneous satellite traffic demand. This paper investigates introducing carrier aggregation to satellite systems from a link layer perspective. Deployment of carrier aggregation in satellite systems with the combination of multiple carriers that have different characteristics requires effective scheduling schemes for reliable communications. To this end, a novel load balancing scheduling algorithm has been proposed to distribute data packets across the aggregated carriers based on channel capacities and to utilize spectrum efficiently. Moreover, in order to ensure that the received data packets are delivered without perturbing the original transmission order, a perceptive scheduling algorithm has been developed that takes into consideration channel properties along with the instantaneous available resources at the aggregated carriers. The proposed modifications have been carefully designed to make carrier aggregation transparent above the medium access control (MAC) layer. Additionally, the complexity analysis of the proposed algorithms has been conducted in terms of the computational loads. Simulation results are provided to validate our analysis, demonstrate the design tradeoffs, and to highlight the potentials of carrier aggregation applied to satellite communication systems. [less ▲]

Detailed reference viewed: 118 (12 UL)
Full Text
Peer Reviewed
See detailFlexible Resource Optimization for GEO Multibeam Satellite Communication System
Abdu, Tedros Salih UL; Kisseleff, Steven UL; Lagunas, Eva UL et al

in IEEE Transactions on Wireless Communications (2021)

Conventional GEO satellite communication systems rely on a multibeam foot-print with a uniform resource allocation to provide connectivity to users. However, applying uniform resource allocation is ... [more ▼]

Conventional GEO satellite communication systems rely on a multibeam foot-print with a uniform resource allocation to provide connectivity to users. However, applying uniform resource allocation is inefficient in presence of non-uniform demand distribution. To overcome this limitation, the next generation of broadband GEO satellite systems will enable flexibility in terms of power and bandwidth assignment, enabling on-demand resource allocation. In this paper, we propose a novel satellite resource assignment design whose goal is to satisfy the beam traffic demand by making use of the minimum transmit power and utilized bandwidth. The motivation behind the proposed design is to maximize the satellite spectrum utilization by pushing the spectrum reuse to affordable limits in terms of tolerable interference. The proposed problem formulation results in a non-convex optimization structure, for which we propose an efficient tractable solution. We validate the proposed method with extensive numerical results, which demonstrate the efficiency of the proposed approach with respect to benchmark schemes. [less ▲]

Detailed reference viewed: 182 (39 UL)
Full Text
Peer Reviewed
See detailSatellite Broadband Capacity-on-Demand: Dynamic Beam Illumination with Selective Precoding
Chen, Lin UL; Lagunas, Eva UL; Chatzinotas, Symeon UL et al

in European Signal Processing Conference (EUSIPCO), Dublin, Ireland, Aug. 2021 (2021)

Efficient satellite resource utilization is one of the key challenges in next generation high-throughput satellite communication system. In this context, dynamic coverage scheduling based on traffic ... [more ▼]

Efficient satellite resource utilization is one of the key challenges in next generation high-throughput satellite communication system. In this context, dynamic coverage scheduling based on traffic demand has emerged as a promising solution, focusing system capacity into geographical areas where it is needed. Conventional Beam Hopping (BH) satellite system exploit the time-domain flexibility, which provides all available spectrum to a selected set of beams as long as they are not adjacent to each other. However, large geographical areas involving more than one adjacent beam may require full access to the available spectrum during particular instances of time. In this paper, we address this problem by proposing a dynamic beam illumination scheme combined with selective precoding, where only sub-sets of beams that are subject to strong inter-beam interference are precoded. With selective precoding, complexity at the groundsegment is reduced and only considered when needed. Supporting results based on numerical simulations show that the proposed scheme outperforms the relevant benchmarks in terms of demand matching performance. [less ▲]

Detailed reference viewed: 158 (70 UL)
Full Text
Peer Reviewed
See detailDemand-based Scheduling for Precoded Multibeam High-Throughput Satellite Systems
Jubba Honnaiah, Puneeth UL; Lagunas, Eva UL; Spano, Danilo et al

in IEEE Wireless Communications and Networking Conference (WCNC), March 2021 (2021)

Detailed reference viewed: 57 (15 UL)
Full Text
Peer Reviewed
See detailDemand-Aware Beam Design and User Scheduling for Precoded Multibeam GEO Satellite Systems
Jubba Honnaiah, Puneeth UL; Lagunas, Eva UL; Maturo, Nicola et al

in 25th International ITG Workshop on Smart Antennas (WSA 2021) (2021)

For many years, satellite footprints have been fixed from the design phase until the last day of the satellite operational life. Flexibility in coverage by means of reconfigurable beams is becoming ... [more ▼]

For many years, satellite footprints have been fixed from the design phase until the last day of the satellite operational life. Flexibility in coverage by means of reconfigurable beams is becoming increasingly popular thanks to the recent developments in active antenna systems. On the other hand, spatial frequency reuse combined with precoding has been shown to boost the spectral efficiency while lowering the cost per bit. In this context, and motivated by the unbalanced demand requests of the satellite users, we propose a shift from the traditional system-throughput maximization design towards a demand-Aware design, where a new beam shaping technique and user scheduling are combined to satisfy the users’ demands. Supporting numerical results are provided that validate the effectiveness of the proposed beam planning and scheduling and quantify the benefits over conventional rigid techniques. [less ▲]

Detailed reference viewed: 38 (2 UL)
Full Text
Peer Reviewed
See detailPrecoding with Received-Interference Power Control for Multibeam Satellite Communication Systems
Lagunas, Eva UL; Perez-Neira, Ana Isabel; Martinez, Marc et al

in Frontiers in Space Technologies (2021)

Zero-Forcing (ZF) and Regularized Zero-Forcing (RZF) precoding are low-complexity sub-optimal solutions widely accepted in the satellite communications community to mitigate the resulting co-channel ... [more ▼]

Zero-Forcing (ZF) and Regularized Zero-Forcing (RZF) precoding are low-complexity sub-optimal solutions widely accepted in the satellite communications community to mitigate the resulting co-channel interference caused by aggressive frequency reuse. However, both are sensitive to the conditioning of the channel matrix, which can greatly reduce the achievable gains. This paper brings the attention to the benefits of a design that allows some residual received interference power at the co-channel users. The motivation behind this approach is to relax the dependence on the matrix inversion procedure involved in conventional precoding schemes. In particular, the proposed scheme aims to be less sensitive to the user scheduling, which is one of the key limiting factors for the practical implementation of precoding. Furthermore, the proposed technique can also cope with more users than satellite beams. In fact, the proposed precoder can be tuned to control the interference towards the co-channel beams, which is a desirable feature that is not met by the existing RZF solutions. The design is formulated as a non-convex optimization and we study various algorithms in order to obtain a practical solution. Supporting results based on numerical simulations show that the proposed precoding implementations are able to outperform the conventional ZF and RZF schemes. [less ▲]

Detailed reference viewed: 53 (7 UL)
Full Text
Peer Reviewed
See detailPrecoded Cluster Hopping for Multibeam GEO Satellite Communication Systems
Lagunas, Eva UL; Kibria, Mirza Golam; Al-Hraishawi, Hayder UL et al

in Frontiers in Signal Processing (2021)

Detailed reference viewed: 168 (8 UL)
Full Text
Peer Reviewed
See detailNOMA-Enabled Multi-Beam Satellite Systems: Joint Optimization to Overcome Offered-Requested Data Mismatches
Wang, Anyue UL; Lei, Lei UL; Lagunas, Eva UL et al

in IEEE Transactions on Vehicular Technology (2020)

Detailed reference viewed: 221 (35 UL)