References of "Kreisel, Jens 50031730"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailDirect observation of polar tweed in LaAlO3
Salje, Ekhard K. H.; Alexe, Marin; Kustov, Sergey et al

in SCIENTIFIC REPORTS (2016), 6

Polar tweed was discovered in mechanically stressed LaAlO3. Local patches of strained material (diameter ca. 5 mu m) form interwoven patterns seen in birefringence images, Piezo-Force Microscopy (PFM) and ... [more ▼]

Polar tweed was discovered in mechanically stressed LaAlO3. Local patches of strained material (diameter ca. 5 mu m) form interwoven patterns seen in birefringence images, Piezo-Force Microscopy (PFM) and Resonant Piezoelectric Spectroscopy (RPS). PFM and RPS observations prove unequivocally that electrical polarity exists inside the tweed patterns of LaAlO3. The local piezoelectric effect varies greatly within the tweed patterns and reaches magnitudes similar to quartz. The patterns were mapped by the shift of the E-g soft-mode frequency by Raman spectroscopy. [less ▲]

Detailed reference viewed: 69 (0 UL)
Full Text
Peer Reviewed
See detailUltrafast acousto-optic mode conversion in optically birefringent ferroelectrics
Lejman, Mariusz; Vaudel, Gwenaelle; Infante, Ingrid C. et al

in NATURE COMMUNICATIONS (2016), 7

The ability to generate efficient giga-terahertz coherent acoustic phonons with femtosecond laser makes acousto-optics a promising candidate for ultrafast light processing, which faces electronic device ... [more ▼]

The ability to generate efficient giga-terahertz coherent acoustic phonons with femtosecond laser makes acousto-optics a promising candidate for ultrafast light processing, which faces electronic device limits intrinsic to complementary metal oxide semiconductor technology. Modern acousto-optic devices, including optical mode conversion process between ordinary and extraordinary light waves (and vice versa), remain limited to the megahertz range. Here, using coherent acoustic waves generated at tens of gigahertz frequency by a femtosecond laser pulse we reveal the mode conversion process and show its efficiency in ferroelectric materials such as BiFeO3 and LiNbO3. Further to the experimental evidence, we provide a complete theoretical support to this all-optical ultrafast mechanism mediated by acousto-optic interaction. By allowing the manipulation of light polarization with gigahertz coherent acoustic phonons, our results provide a novel route for the development of next-generation photonic-based devices and highlight new capabilities in using ferroelectrics in modern photonics. [less ▲]

Detailed reference viewed: 82 (0 UL)
Full Text
Peer Reviewed
See detailRaman spectroscopy of rare-earth orthoferrites RFeO3 (R=La, Sm, Eu, Gd Tb, Dy)
Weber, Mads Christof; Guennou, Mael UL; Zhao, Hong Jian et al

in PHYSICAL REVIEW B (2016), 94(21),

We report a Raman scattering study of six rare-earth orthoferrites La, Sm, Eu, Gd, Tb, Dy. The use of extensive polarized Raman scattering of SmFeO3 and first-principles calculations enable the assignment ... [more ▼]

We report a Raman scattering study of six rare-earth orthoferrites La, Sm, Eu, Gd, Tb, Dy. The use of extensive polarized Raman scattering of SmFeO3 and first-principles calculations enable the assignment of the observed phonon modes to vibrational symmetries and atomic displacements. The assignment of the spectra and their comparison throughout the whole series allow correlating the phonon modes with the orthorhombic structural distortions of RFeO3 perovskites. In particular the positions of two specific A(g) modes scale linearly with the two FeO6 octahedra tilt angles, allowing the distortion to be tracked throughout the series. At variance with literature, we find that the two octahedra tilt angles scale differently with the vibration frequencies of their respective A(g) modes. This behavior, as well as the general relations between the tilt angles, the frequencies of the associated modes, and the ionic radii are rationalized in a simple Landau model. The reported Raman spectra and associated phonon-mode assignment provide reference data for structural investigations of the whole series of orthoferrites. [less ▲]

Detailed reference viewed: 100 (2 UL)
Full Text
Peer Reviewed
See detailOptical spectroscopy study on the photo-response in multiferroic BiFeO3
Burkert, F.; Kreisel, Jens UL; Kuntscher, C. A.

in APPLIED PHYSICS LETTERS (2016), 109(18),

We investigate the underlying mechanism of the photostriction effect in single-crystalline BiFeO3 by transmission measurements in the infrared and visible frequency range under continuous illumination ... [more ▼]

We investigate the underlying mechanism of the photostriction effect in single-crystalline BiFeO3 by transmission measurements in the infrared and visible frequency range under continuous illumination with a green 532 nm). The small photo-induced changes in the transmission spectrum reveal three well-defined absorption features at 1.22 eV, 1.66 eV, and 2.14 eV, which we assign to charge-transfer excitons and in-gap defect states probably related to oxygen vacancies. The intensity of the three absorption features follows a linear dependence on the illumination intensity for an irradiance above 90 W/m(2). Published by AIP Publishing. [less ▲]

Detailed reference viewed: 67 (0 UL)
Full Text
Peer Reviewed
See detailLow energy electron imaging of domains and domain walls in magnesium-doped lithium niobate
Nataf, G. F.; Grysan, P.; Guennou, Mael UL et al

in SCIENTIFIC REPORTS (2016), 6

The understanding of domain structures, specifically domain walls currently attracts a significant attention in the field of (multi)-ferroic materials. In this article, we analyze contrast formation in ... [more ▼]

The understanding of domain structures, specifically domain walls currently attracts a significant attention in the field of (multi)-ferroic materials. In this article, we analyze contrast formation in full field electron microscopy applied to domains and domain walls in the uniaxial ferroelectric lithium niobate, which presents a large 3.8 eV band gap and for which conductive domain walls have been reported. We show that the transition from Mirror Electron Microscopy (MEM - electrons reflected) to Low Energy Electron Microscopy (LEEM - electrons backscattered) gives rise to a robust contrast between domains with upwards (P-up) and downwards (P-down) polarization, and provides a measure of the difference in surface potential between the domains. We demonstrate that out-of-focus conditions of imaging produce contrast inversion, due to image distortion induced by charged surfaces and also carry information on the polarization direction in the domains. Finally, we show that the intensity profile at domain walls provides experimental evidence for a local stray, lateral electric field. [less ▲]

Detailed reference viewed: 55 (0 UL)
Full Text
Peer Reviewed
See detailMultiple strain-induced phase transitions in LaNiO3 thin films
Weber, M. C.; Guennou, Mael UL; Dix, N. et al

in PHYSICAL REVIEW B (2016), 94(1),

Strain effects on epitaxial thin films of LaNiO3 grown on different single crystalline substrates are studied by Raman scattering and first-principles simulation. New Raman modes, not present in bulk or ... [more ▼]

Strain effects on epitaxial thin films of LaNiO3 grown on different single crystalline substrates are studied by Raman scattering and first-principles simulation. New Raman modes, not present in bulk or fully relaxed films, appear under both compressive and tensile strains indicating symmetry reductions. Interestingly, the Raman spectra and the underlying crystal symmetry for tensile and compressively strained films are different. Extensive mapping of LaNiO3 phase stability is addressed by simulations, showing that a variety of crystalline phases are indeed stabilized under strain. The calculated Raman frequencies reproduce the principal features of the experimental spectra, supporting the validity of the multiple strain-driven structural transitions predicted by the simulations. [less ▲]

Detailed reference viewed: 43 (0 UL)
Full Text
Peer Reviewed
See detailBismuth-based perovskites as multiferroics
Guennou, Mael; Viret, Michel; Kreisel, Jens UL

in Comptes Rendus Physique (2015), 16(2), 182-192

This review devoted to multiferroic properties of bismuth-based perovskites is divided into two parts. The first one focuses on BiFeO3and summarizes the recent progress made in the studies of its ... [more ▼]

This review devoted to multiferroic properties of bismuth-based perovskites is divided into two parts. The first one focuses on BiFeO3and summarizes the recent progress made in the studies of its pressure–temperature phase diagram and magnetoelectric coupling phenomena. The second part discusses in a more general way the issue of polar—and multiferroic—phases in BiBO3perovskites and the competition between ferroelectricity and other structural instabilities, from an inventory of recently synthesized compounds. [less ▲]

Detailed reference viewed: 157 (11 UL)
See detailMaterials science in Luxembourg
Kreisel, Jens UL; Wirtz, Ludger UL; Schiltz, Marc

in Nature Materials (2014), 13

With its strategic location and firm commitment to investing in research, Luxembourg has ambitious plans to become a significant player in the international research arena.

Detailed reference viewed: 354 (31 UL)
Full Text
Peer Reviewed
See detailJahn-Teller, Polarity, and Insulator-to-Metal Transition in BiMnO3 at High Pressure
Guennou, Mael; Bouvier, Pierre; Toulemonde, Pierre et al

in Physical Review Letters (2014), 112

The interaction of coexisting structural instabilities in multiferroic materials gives rise to intriguing coupling phenomena and extraordinarily rich phase diagrams, both in bulk materials and strained ... [more ▼]

The interaction of coexisting structural instabilities in multiferroic materials gives rise to intriguing coupling phenomena and extraordinarily rich phase diagrams, both in bulk materials and strained thin films. Here we investigate the multiferroic BiMnO3 with its peculiar 6s2 electrons and four interacting mechanisms: electric polarity, octahedra tilts, magnetism, and cooperative Jahn-Teller distortion. We have probed structural transitions under high pressure by synchrotron x-ray diffraction and Raman spectroscopy up to 60 GPa. We show that BiMnO3 displays under pressure a rich sequence of five phases with a great variety of structures and properties, including a metallic phase above 53 GPa and, between 37 and 53 GPa, a strongly elongated monoclinic phase that allows ferroelectricity, which contradicts the traditional expectation that ferroelectricity vanishes under pressure. Between 7 and 37 GPa, the Pnma structure remains remarkably stable but shows a reduction of the Jahn-Teller distortion in a way that differs from the behavior observed in the archetypal orthorhombic Jahn-Teller distorted perovskite LaMnO3. [less ▲]

Detailed reference viewed: 94 (5 UL)
Full Text
Peer Reviewed
See detailInterplay of chemical structure and magnetic order coupling at the interface between Cr2O3 and Fe3O4 in hybrid nanocomposites
Otero-Lorenzo, Ruth; Weber, Mads C.; Thomas, Pamela A. et al

in Physical Chemistry Chemical Physics (2014), 16(40), 22337-22342

Hybrid nanocomposites based on ferrimagnetic (FiM) Fe3O4 and magnetoelectric antiferromagnetic (AFM) Cr2O3 nanocrystals were synthesized to offer a particular three-dimensional (3D) interface between the ... [more ▼]

Hybrid nanocomposites based on ferrimagnetic (FiM) Fe3O4 and magnetoelectric antiferromagnetic (AFM) Cr2O3 nanocrystals were synthesized to offer a particular three-dimensional (3D) interface between the two oxides. This interface favours an intermixing process (demonstrated by combining Raman spectroscopy and magnetization measurements) that determines the final magnetic behavior. [less ▲]

Detailed reference viewed: 145 (1 UL)
Full Text
Peer Reviewed
See detailDynamic and structural properties of orthorhombic rare-earth manganites under high pressure
Mota, D. A.; Almeida, A.; Rodrigues, V. H. et al

in Physical Review B (2014), 90(5),

We report a high-pressure study of orthorhombic rare-earth manganites AMnO3 using Raman scattering (for A = Pr, Nd, Sm, Eu, Tb, and Dy) and synchrotron x-ray diffraction (XRD), for A = Pr, Sm, Eu, and Dy ... [more ▼]

We report a high-pressure study of orthorhombic rare-earth manganites AMnO3 using Raman scattering (for A = Pr, Nd, Sm, Eu, Tb, and Dy) and synchrotron x-ray diffraction (XRD), for A = Pr, Sm, Eu, and Dy. In all cases, a phase transition was evidenced by the disappearance of the Raman signal at a critical pressure that depends on the A cation. For the compounds with A = Pr, Sm, and Dy, XRD confirms the presence of a corresponding structural transition to a noncubic phase, so that the disappearance of the Raman spectrum can be interpreted as an insulator-to-metal transition. We analyze the compression mechanisms at work in the different manganites via the pressure dependence of the lattice parameters, the shear strain in the ac plane, and the Raman bands associated with out-of-phase MnO6 rotations and in-plane O2 symmetric stretching modes. Our data show a crossover across the rare-earth series between two different kinds of behavior. For the smaller A cations considered in this study (Dy and Tb), the compression is nearly isotropic in the ac plane, with only small evolutions of the tilt angles and cooperative Jahn-Teller distortion. As the radius of the A cation increases, the pressure-induced reduction of Jahn-Teller distortion becomes more pronounced and increasingly significant as a compression mechanism, while the pressure-induced tilting of octahedra chains becomes conversely less pronounced. We finally discuss our results in light of the notion of chemical pressure and show that the analogy with hydrostatic pressure works quite well for manganites with the smaller A cations considered in this paper but can be misleading with large A cations. [less ▲]

Detailed reference viewed: 112 (1 UL)
Full Text
Peer Reviewed
See detailFirst-principles study of PbTiO3 under uniaxial strains and stresses
Sharma, Henu; Kreisel, Jens UL; Ghosez, Philippe

in Physical Review B (2014), 90(21),

The behavior of PbTiO3 under uniaxial strains and stresses is investigated from first-principles calculations within density functional theory. We show that irrespective of the uniaxial mechanical ... [more ▼]

The behavior of PbTiO3 under uniaxial strains and stresses is investigated from first-principles calculations within density functional theory. We show that irrespective of the uniaxial mechanical constraint applied, the system keeps a purely ferroelectric ground state, with the polarization aligned either along the constraint direction (FEz phase) or along one of the pseudocubic axes perpendicular to it (FEx phase). This contrasts with the cases of isotropic and biaxialmechanical constraints for which novel phases combining ferroelectric and antiferrodistortive motions have been previously reported. Under uniaxial strain, PbTiO3 switched from an FEx ground state under compressive strain to an FEz ground state under tensile strain beyond a critical strain ηc zz ≈ +1%. Under uniaxial stress, PbTiO3 exhibits either an FEx ground state under compression (σzz < 0) or an FEz ground state under tension (σzz > 0). Here, however, an abrupt jump of the structural parameters is also predicted under both compressive and tensile stresses at critical values σzz ≈ +2 and −8 GPa. This behavior appears to be similar to that predicted under negative isotropic pressure and might turn out to be practically useful for enhancing the piezoelectric response in nanodevices. [less ▲]

Detailed reference viewed: 94 (1 UL)
Full Text
Peer Reviewed
See detailPrediction of giant elastocaloric strength and stress-mediated electrocaloric effect in BaTiO3 single crystals
Liu, Yang; Wei, Jie; Janolin, Pierre-Eymeric et al

in Physical Review B (2014), 90(10),

An applied stress field σ3 can reversibly change the temperature of an elastocaloric material under adiabatic conditions, and the temperature change Tσ3 is usually maximized near phase transitions.Using a ... [more ▼]

An applied stress field σ3 can reversibly change the temperature of an elastocaloric material under adiabatic conditions, and the temperature change Tσ3 is usually maximized near phase transitions.Using a thermodynamic approach, we demonstrate that an elastocaloric strength α = | Tσ3 |/|σ3| of 0.016 K/MPa can be achieved benefiting from the full first-order phase transition in BaTiO3 single crystals, which is comparable with typical elastocaloric materials reported in the literature. The elastocaloric temperature change is found to be giant (3.2 K) under a stress of 200 MPa with a temperature span of over 50 K, which can be significantly larger than its electrocaloric counterpart (∼1 K). Moreover, it is found that the elastocaloric strength can be remarkably enhanced (2.32 K/MPa) as long as the phase transition is triggered even by a modest stress near the sharp first-order phase transition, which is two orders of magnitude larger than those accomplished by full transition. Therefore, even a low stress (<30 MPa) can induce a modest elastocaloric effect (1.3 K) comparable with the electrocaloric counterpart, which is accompanied by a reduction of the working temperature span. In addition, it is found that the electrocaloric peak under tensile stresses moves towards higher temperatures with its magnitude slightly enhanced. Hopefully, our study will stimulate further investigations on elastocaloric and stress-mediated electrocaloric effects in ferroelectrics. [less ▲]

Detailed reference viewed: 84 (3 UL)
Full Text
Peer Reviewed
See detailSingle-crystalline BiMnO3 studied by temperature-dependent x-ray diffraction and Raman spectroscopy
Toulemonde, P.; Bordet, P.; Bouvier, P. et al

in Physical Review B (2014), 89(22),

We report on the temperature dependence of the phonons and crystallographic parameters in BiMnO3 single crystals grown under high pressure and high temperature. The crystallographic structure of the ... [more ▼]

We report on the temperature dependence of the phonons and crystallographic parameters in BiMnO3 single crystals grown under high pressure and high temperature. The crystallographic structure of the sample was refined from room temperature to liquid helium temperature in the centrosymmetric C2/c space group, i.e., a group which does not allow ferroelectricity. In addition, the lattice dynamics was probed by Raman spectroscopy down to liquid nitrogen temperature, i.e., below the ferromagnetic transition at TC = 100 ± 2 K. Both crystallographic and Raman data indicate the absence of a structural phase transition at the ferromagnetic ordering or any other temperature. The Raman signature around TC shows a significant spin-phonon coupling for the high-frequency bands. [less ▲]

Detailed reference viewed: 139 (2 UL)
Full Text
Peer Reviewed
See detailOrder-parameter symmetries of domain walls in ferroelectrics and ferroelastics
Toledano, Pierre; Guennou, Mael; Kreisel, Jens UL

in Physical Review B (2014), 89(13),

The symmetry of boundaries between ferroelectric, ferroelastic, and antiphase domains is a key element for a theoretical understanding of their properties. Here, we derive this symmetry from their organic ... [more ▼]

The symmetry of boundaries between ferroelectric, ferroelastic, and antiphase domains is a key element for a theoretical understanding of their properties. Here, we derive this symmetry from their organic relation to the symmetry of the primary transition order parameters. The domain wall symmetries are shown to coincide with directions of the order-parameter n-dimensional vector space, corresponding to sum of the vectors associated with adjacent domain states. This property is illustrated by the determination of the maximal symmetries of domain walls in BaTiO3, LaAlO3, SrTiO3, and Gd2(MoO4)3. Besides, the domain pattern in YMnO3 is interpreted as resulting from an annihilation-creation process, the annihilation of the antiphase domain walls creating six ferroelectric domain walls merging at a single point. [less ▲]

Detailed reference viewed: 138 (2 UL)
Full Text
Peer Reviewed
See detailStructures and Magnetism of the Rare-Earth Orthochromite Perovskite Solid Solution LaxSm1−xCrO3
Daniels, Luke M.; Weber, Mads C.; Lees, Martin R. et al

in Inorganic Chemistry (2013), 52

A new mixed rare-earth orthochromite series, LaxSm1−xCrO3, prepared through single-step hydrothermal synthesis is reported. Solid solutions (x = 0, 0.25, 0.5, 0.625, 0.75, 0.875, and 1.0) were prepared by ... [more ▼]

A new mixed rare-earth orthochromite series, LaxSm1−xCrO3, prepared through single-step hydrothermal synthesis is reported. Solid solutions (x = 0, 0.25, 0.5, 0.625, 0.75, 0.875, and 1.0) were prepared by the hydrothermal treatment of amorphous mixed-metal hydroxides at 370 °C for 48 h. Transmission electron microscopy (TEM) reveals the formation of highly crystalline particles with dendritic-like morphologies. Rietveld refinements against high-resolution powder X-ray diffraction (PXRD) data show that the distorted perovskite structures are described by the orthorhombic space group Pnma over the full composition range. Unit cell volumes and Cr−O−Cr bond angles decrease monotonically with increasing samarium content, consistent with the presence of the smaller lanthanide in the structure. Raman spectroscopy confirms the formation of solid solutions, the degree of their structural distortion. With the aid of shell-model calculations the complex mixing of Raman modes below 250 cm−1 is clarified. Magnetometry as a function of temperature reveals the onset of low-temperature antiferromagnetic ordering of Cr3+ spins with weak ferromagnetic component at Néel temperatures (TN) that scale linearly with unit cell volume and structural distortion. Coupling effects between Cr3+ and Sm3+ ions are examined with enhanced susceptibilities below TN due to polarization of Sm3+ moments. At low temperatures the Cr3+ sublattice is shown to undergo a second-order spin reorientation observed as a rapid decrease of susceptibility. [less ▲]

Detailed reference viewed: 104 (1 UL)
Full Text
Peer Reviewed
See detailBifurcated Polarization Rotation in Bismuth-Based Piezoelectrics
Keeble, Dean S.; Barney, Emma R.; Keen, David A. et al

in ADVANCED FUNCTIONAL MATERIALS (2013), 23(2), 185-190

ABO3 perovskite-type solid solutions display a large variety of structural and physical properties, which can be tuned by chemical composition or external parameters such as temperature, pressure strain ... [more ▼]

ABO3 perovskite-type solid solutions display a large variety of structural and physical properties, which can be tuned by chemical composition or external parameters such as temperature, pressure strain, electric, or magnetic fields. Some solid solutions show remarkably enhanced physical properties including colossal magnetoresistance or giant piezoelectricity. It has been recognized that structural distortions, competing on the local level, are key to understanding and tuning these remarkable properties, yet, it remains a challenge to experimentally observe such local structural details. Here from neutron pair-distribution analysis, a temperature-dependent 3D atomic-level model of the lead-free piezoelectric perovskite Na0.5Bi0.5TiO3 (NBT) is reported. The statistical analysis of this model shows how local distortions compete, how this competition develops with temperature, and, in particular, how different polar displacements of Bi3+ cations coexist as a bifurcated polarization, highlighting the interest of Bi-based materials in the search for new lead-free piezoelectrics. [less ▲]

Detailed reference viewed: 132 (0 UL)
Full Text
Peer Reviewed
See detailRevised structural phase diagram of (Ba0.7Ca0.3TiO3)-(BaZr0.2Ti0.8O3)
Keeble, Dean S.; Benabdallah, Feres; Thomas, Pam A. et al

in APPLIED PHYSICS LETTERS (2013), 102(9),

The temperature-composition phase diagram of barium calcium titanate zirconate (x(Ba0.7Ca0.3TiO3)(1-x)(BaZr0.2Ti0.8O3); BCTZ) has been reinvestigated using high-resolution synchrotron x-ray powder ... [more ▼]

The temperature-composition phase diagram of barium calcium titanate zirconate (x(Ba0.7Ca0.3TiO3)(1-x)(BaZr0.2Ti0.8O3); BCTZ) has been reinvestigated using high-resolution synchrotron x-ray powder diffraction. Contrary to previous reports of an unusual rhombohedral-tetragonal phase transition in this system, we have observed an intermediate orthorhombic phase, isostructural to that present in the parent phase, BaTiO3, and we identify the previously assigned T-R transition as a T-O transition. We also observe the O-R transition coalescing with the previously observed triple point, forming a phase convergence region. The implication of the orthorhombic phase in reconciling the exceptional piezoelectric properties with the surrounding phase diagram is discussed. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4793400] [less ▲]

Detailed reference viewed: 43 (0 UL)
Full Text
Peer Reviewed
See detailPhonon Raman scattering of RCrO3 perovskites (R = Y, La, Pr, Sm, Gd, Dy Ho, Yb, Lu)
Weber, M. C.; Kreisel, Jens UL; Thomas, P. A. et al

in PHYSICAL REVIEW B (2012), 85(5),

We report a systematic investigation of orthorhombic perovskite-type RCrO3 powder samples by Raman scattering for nine different rare earth Y, La, Pr, Sm, Gd, Dy, Ho, Yb, and Lu). The room-temperature ... [more ▼]

We report a systematic investigation of orthorhombic perovskite-type RCrO3 powder samples by Raman scattering for nine different rare earth Y, La, Pr, Sm, Gd, Dy, Ho, Yb, and Lu). The room-temperature Raman spectra and the associated phonon mode assignment provide reference data for structural investigation of the whole series of RCrO3 orthochromites and phonon ab-initio calculations. The assignment of the chromite spectra and comparison with Raman data on other orthorhombic perovskites allows correlating the phonon modes with the structural distortions in the RCrO3 series. In particular, two A(g) modes are identified as octahedra rotation soft modes, as their positions scale linearly with the octahedra tilt angle of the CrO6 octahedra. [less ▲]

Detailed reference viewed: 30 (0 UL)