References of "Krüger, Rejko 50002143"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailMetformin reverses TRAP1 mutation-associated alterations in mitochondrial function in Parkinson's disease
Fitzgerald, Julia C.; Zimprich, Alexander; Carvajal-Berrio, Daniel A. et al

in Brain : A Journal of Neurology (2017), 140(9), 2444-2459

The mitochondrial proteins TRAP1 and HtrA2 have previously been shown to be phosphorylated in the presence of the Parkinson’s disease kinase PINK1 but the downstream signaling is unclear. HtrA2 and PINK1 ... [more ▼]

The mitochondrial proteins TRAP1 and HtrA2 have previously been shown to be phosphorylated in the presence of the Parkinson’s disease kinase PINK1 but the downstream signaling is unclear. HtrA2 and PINK1 loss of function causes parkinsonism in humans and animals. Here, we identified TRAP1 as an interactor of HtrA2 using an unbiased mass spectrometry approach. In our human cell models, TRAP1 overexpression is protective, rescuing HtrA2 and PINK1-associated mitochondrial dysfunction and suggesting that TRAP1 acts downstream of HtrA2 and PINK1. HtrA2 regulates TRAP1 protein levels, but TRAP1 is not a direct target of HtrA2 protease activity. Following genetic screening of Parkinson’s disease patients and healthy controls, we also report the first TRAP1 mutation leading to complete loss of functional protein in a patient with late onset Parkinson’s disease. Analysis of fibroblasts derived from the patient reveal that oxygen consumption, ATP output and reactive oxygen species are increased compared to healthy individuals. This is coupled with an increased pool of free NADH, increased mitochondrial biogenesis, triggering of the mitochondrial unfolded protein response, loss of mitochondrial membrane potential and sensitivity to mitochondrial removal and apoptosis. These data highlight the role of TRAP1 in the regulation of energy metabolism and mitochondrial quality control. Interestingly, the diabetes drug metformin reverses mutation-associated alterations on energy metabolism, mitochondrial biogenesis and restores mitochondrial membrane potential. In summary, our data show that TRAP1 acts downstream of PINK1 and HtrA2 for mitochondrial fine tuning, whereas TRAP1 loss of function leads to reduced control of energy metabolism, ultimately impacting mitochondrial membrane potential. These findings offer new insight into mitochondrial pathologies in Parkinson’s disease and provide new prospects for targeted therapies. [less ▲]

Detailed reference viewed: 256 (34 UL)
Full Text
Peer Reviewed
See detailAn Observational Study of the Effect of Levodopa-Carbidopa Intestinal Gel on Activities of Daily Living and Quality of Life in Advanced Parkinson's Disease Patients.
Krüger, Rejko UL; Lingor, Paul; Doskas, Triantafyllos et al

in Advances in therapy (2017)

INTRODUCTION: Continuous delivery of levodopa-carbidopa intestinal gel (LCIG) by percutaneous endoscopic gastrojejunostomy (PEG-J) in advanced Parkinson's disease (PD) patients reduces variability in ... [more ▼]

INTRODUCTION: Continuous delivery of levodopa-carbidopa intestinal gel (LCIG) by percutaneous endoscopic gastrojejunostomy (PEG-J) in advanced Parkinson's disease (PD) patients reduces variability in plasma levels, providing better control of motor fluctuations ("on" and "off" states). The MONOTREAT study assessed the effect of LCIG on activities of daily living, motor and non-motor symptoms, and quality of life in advanced PD patients. METHODS: This prospective, observational study included patients with advanced, levodopa-responsive PD with either 2-4 h of "off" time or 2 h of dyskinesia daily. Patients received LCIG via PEG-J for 16 h continuously. Effectiveness was assessed using Unified PD Rating Scale parts II and III, the Non-Motor Symptom Scale, and the PD Questionnaire-8. RESULTS: The mean (SD) treatment duration was 275 (157) days. Patients experienced significant improvement from baseline in activities of daily living at final visit (p < 0.05) as well as at months 3 and 6 (p < 0.0001). Patients also experienced significant improvements from baseline in quality of life and non-motor symptoms at all time points (p < 0.001 for all). Specifically, patients manifested significant improvements in mean change from baseline at every study visit in five of nine non-motor symptom score domains: sleep/fatigue, mood/cognition, gastrointestinal tract, urinary, and miscellaneous. One-third of patients (32.8%) experienced an adverse event; 21.9% experienced a serious adverse event; 11.1% discontinued because of an adverse event. CONCLUSION: This study demonstrated significant and clinically relevant improvements in measures of activities of daily living, quality of life, and a specific subset of non-motor symptoms after treatment with LCIG. FUNDING: AbbVie Inc. [less ▲]

Detailed reference viewed: 109 (3 UL)
Full Text
Peer Reviewed
See detailRare variant analysis of the PPMI dataset to uncover the complex genetic architecture of Parkinson’s disease
Bobbili, Dheeraj Reddy UL; May, Patrick UL; Krüger, Rejko UL

in Movement Disorders : Official Journal of the Movement Disorder Society (2017, June 02), 322(Supplement S2), 405

Objective: To unravel the genetic factors that play a role in PD we used the whole exome sequencing data available as a part of Parkinson Progression Markers Initiative (PPMI). Background: Parkinson’s ... [more ▼]

Objective: To unravel the genetic factors that play a role in PD we used the whole exome sequencing data available as a part of Parkinson Progression Markers Initiative (PPMI). Background: Parkinson’s disease (PD) is a complex disease. Besides variants in high-risk genes such as LRRK2 and PARK2, multiple genes associated to sporadic PD were discovered via genome-wide association studies. Yet, there is a large number of genetic factors that need to be deciphered. Methods: To unravel the genetic factors that play a role in PD we used the whole exome sequencing data available as a part of Parkinson Progression Markers Initiative (PPMI). The dataset comprised of 435 PD cases and 162 ethnically matched controls, respectively. We performed burden tests at single variant, gene and geneset levels on common and rare exonic and splice-variants. We also looked for severity of rare highly deleterious variants (CADD phred score>30) using the CADD score as well as singleton (variants seen in only one individual across cases and controls) rare variants. Additionally, we performed the functional enrichment analysis with the genes harboring rare highly deleterious variants (case uniq genes) that are only present in cases. Results: We observed an increased mutational burden of singleton variants in PD cases compared to the controls in nonsynonymous+LOF variants (empirical P-value 0.005) but not in the synonymous variants (empirical P-value 0.09). We observed a higher significant burden (P-value 0.028) as well as higher significant severity (empirical P-value 0.027) of rare, highly deleterious nonsynonymous variants, but not in the synonymous variants of the candidate genes (P-value 0.686, empirical P-value 0.556 for burden and severity respectively). The network analysis of genes having deleterious variants only present in cases (Case uniq) showed a significant increase in connectivity compared to random networks (P-value 0.0002). Pathway analysis of those genes showed a significant enrichment of pathways and biological process implicated in the nervous system functioning and the etiology of PD. Conclusions: Our study supports the complex disease notion of PD by highlighting the convoluted architecture of PD where case uniq genes including LRRK2 are implicated in several biological processes and pathways related to PD. The main finding of this study is to discover the complex genetics of PD at an exome wide level. [less ▲]

Detailed reference viewed: 239 (30 UL)
Full Text
Peer Reviewed
See detailInvolvement of the cerebellum in Parkinson disease and dementia with Lewy bodies.
Seidel, Kay; Bouzrou, Mohamed; Heidemann, Nina et al

in Annals of neurology (2017), 81(6), 898-903

Brains from patients with Parkinson disease or dementia with Lewy bodies show aggregation of alpha-synuclein in precerebellar brainstem structures. Furthermore, patients exhibit resting tremor, unstable ... [more ▼]

Brains from patients with Parkinson disease or dementia with Lewy bodies show aggregation of alpha-synuclein in precerebellar brainstem structures. Furthermore, patients exhibit resting tremor, unstable gait, and impaired balance, which may be associated with cerebellar dysfunction. Therefore, we screened the cerebella of 12 patients with alpha-synucleinopathies for neuropathological changes. Cerebellar nuclei and neighboring white matter displayed numerous aggregates, whereas lobules were mildly affected. Cerebellar aggregation pathology may suggest a prionlike spread originating from affected precerebellar structures, and the high homogeneity between patients with dementia with Lewy bodies and Parkinson disease shows that both diseases likely belong to the same neuropathological spectrum. Ann Neurol 2017;81:898-903. [less ▲]

Detailed reference viewed: 123 (1 UL)
Full Text
Peer Reviewed
See detailNeuroChip, an updated version of the NeuroX genotyping platform to rapidly screen for variants associated with neurological diseases
Blauwendraat, Cornelis; Faghri, Faraz; Pihlstrom, Lasse et al

in Neurobiology of Aging (2017)

Genetics has proven to be a powerful approach in neurodegenerative diseases research, resulting in the identification of numerous causal and risk variants. Previously, we introduced the NeuroX Illumina ... [more ▼]

Genetics has proven to be a powerful approach in neurodegenerative diseases research, resulting in the identification of numerous causal and risk variants. Previously, we introduced the NeuroX Illumina genotyping array, a fast and efficient genotyping platform designed for the investigation of genetic variation in neurodegenerative diseases. Here, we present its updated version, named NeuroChip. The NeuroChip is a low cost, custom-designed array containing a tagging variant backbone of about 306,670 variants complemented with a manually curated custom content comprised of 179,467 variants implicated in diverse neurological diseases, including Alzheimer’s disease, Parkinson’s disease, Lewy body dementia, amyotrophic lateral sclerosis, frontotemporal dementia, progressive supranuclear palsy, corticobasal degeneration and multiple system atrophy. The tagging backbone was chosen because of the low cost and good genome-wide resolution; the custom content can be combined with other backbones, like population or drug development arrays. Using the NeuroChip, we can accurately identify rare variants and impute over 5.3 million common SNPs from the latest release of the Haplotype Reference Consortium. In summary, we describe the design and usage of the NeuroChip array, and show its capability for detecting rare pathogenic variants in numerous neurodegenerative diseases. The NeuroChip has a more comprehensive and improved content, which makes it a reliable, high-throughput, cost-effective screening tool for genetic research and molecular diagnostics in neurodegenerative diseases. [less ▲]

Detailed reference viewed: 302 (67 UL)
Full Text
Peer Reviewed
See detailClassification of advanced stages of Parkinson's disease: translation into stratified treatments.
Krüger, Rejko UL; Klucken, Jochen; Weiss, Daniel et al

in Journal of neural transmission (Vienna, Austria : 1996) (2017), 124(124), 1015-1027

Advanced stages of Parkinson's disease (advPD) still impose a challenge in terms of classification and related stage-adapted treatment recommendations. Previous concepts that define advPD by certain ... [more ▼]

Advanced stages of Parkinson's disease (advPD) still impose a challenge in terms of classification and related stage-adapted treatment recommendations. Previous concepts that define advPD by certain milestones of motor disability apparently fall short in addressing the increasingly recognized complexity of motor and non-motor symptoms and do not allow to account for the clinical heterogeneity that require more personalized approaches. Therefore, deep phenotyping approaches are required to characterize the broad-scaled, continuous and multidimensional spectrum of disease-related motor and non-motor symptoms and their progression under real-life conditions. This will also facilitate the reasoning for clinical care and therapeutic decisions, as neurologists currently have to refer to clinical trials that provide guidance on a group level; however, this does not always account for the individual needs of patients. Here, we provide an overview on different classifications for advPD that translate into critical phenotypic patterns requiring the differential therapeutic adjustments. New concepts refer to precision medicine approaches also in PD and first studies on genetic stratification for therapeutic outcomes provide a potential for more objective treatment recommendations. We define novel treatment targets that align with this concept and make use of emerging device-based assessments of real-life information on PD symptoms. As these approaches require empowerment of patients and integration into treatment decisions, we present communication strategies and decision support based on new technologies to adjust treatment of advPD according to patient demands and safety. [less ▲]

Detailed reference viewed: 131 (6 UL)
Full Text
Peer Reviewed
See detailEvaluation of the interaction between LRRK2 and PARK16 loci in determining risk of Parkinson's disease: analysis of a large multicenter study.
Wang, Lisa; Heckman, Michael G.; Aasly, Jan O. et al

in Neurobiology of aging (2017), 49

A recent study MacLeod et al. has shown that an interaction between variants at the LRRK2 and PARK16 loci influences risk of development of Parkinson's disease (PD). Our study examines the proposed ... [more ▼]

A recent study MacLeod et al. has shown that an interaction between variants at the LRRK2 and PARK16 loci influences risk of development of Parkinson's disease (PD). Our study examines the proposed interaction between LRRK2 and PARK16 variants in modifying PD risk using a large multicenter series of PD patients (7715) and controls (8261) from sites participating in the Genetic Epidemiology of Parkinson's Disease Consortium. Our data does not support a strong direct interaction between LRRK2 and PARK16 variants; however, given the role of retromer and lysosomal pathways in PD, further studies are warranted. [less ▲]

Detailed reference viewed: 129 (3 UL)
Full Text
Peer Reviewed
See detailThe GBAP1 pseudogene acts as a ceRNA for the glucocerebrosidase gene GBA by sponging miR-22-3p.
Straniero, Letizia; Rimoldi, Valeria; Samarani, Maura et al

in Scientific reports (2017), 7(1), 12702

Mutations in the GBA gene, encoding lysosomal glucocerebrosidase, represent the major predisposing factor for Parkinson's disease (PD), and modulation of the glucocerebrosidase activity is an emerging PD ... [more ▼]

Mutations in the GBA gene, encoding lysosomal glucocerebrosidase, represent the major predisposing factor for Parkinson's disease (PD), and modulation of the glucocerebrosidase activity is an emerging PD therapy. However, little is known about mechanisms regulating GBA expression. We explored the existence of a regulatory network involving GBA, its expressed pseudogene GBAP1, and microRNAs. The high level of sequence identity between GBA and GBAP1 makes the pseudogene a promising competing-endogenous RNA (ceRNA), functioning as a microRNA sponge. After selecting microRNAs potentially targeting both transcripts, we demonstrated that miR-22-3p binds to and down-regulates GBA and GBAP1, and decreases their endogenous mRNA levels up to 70%. Moreover, over-expression of GBAP1 3'-untranslated region was able to sequester miR-22-3p, thus increasing GBA mRNA and glucocerebrosidase levels. The characterization of GBAP1 splicing identified multiple out-of-frame isoforms down-regulated by the nonsense-mediated mRNA decay, suggesting that GBAP1 levels and, accordingly, its ceRNA effect, are significantly modulated by this degradation process. Using skin-derived induced pluripotent stem cells of PD patients with GBA mutations and controls, we observed a significant GBA up-regulation during dopaminergic differentiation, paralleled by down-regulation of miR-22-3p. Our results describe the first microRNA controlling GBA and suggest that the GBAP1 non-coding RNA functions as a GBA ceRNA. [less ▲]

Detailed reference viewed: 84 (1 UL)
Full Text
Peer Reviewed
See detailEffects of Subthalamic and Nigral Stimulation on Gait Kinematics in Parkinson's Disease.
Scholten, Marlieke; Klemt, Johannes; Heilbronn, Melanie et al

in Frontiers in neurology (2017), 8

Conventional subthalamic deep brain stimulation for Parkinson's disease (PD) presumably modulates the spatial component of gait. However, temporal dysregulation of gait is one of the factors that is ... [more ▼]

Conventional subthalamic deep brain stimulation for Parkinson's disease (PD) presumably modulates the spatial component of gait. However, temporal dysregulation of gait is one of the factors that is tightly associated with freezing of gait (FOG). Temporal locomotor integration may be modulated differentially at distinct levels of the basal ganglia. Owing to its specific descending brainstem projections, stimulation of the substantia nigra pars reticulata (SNr) area might modulate spatial and temporal parameters of gait differentially compared to standard subthalamic nucleus (STN) stimulation. Here, we aimed to characterize the differential effect of STN or SNr stimulation on kinematic gait parameters. We analyzed biomechanical parameters during unconstrained over ground walking in 12 PD patients with subthalamic deep brain stimulation and FOG. Patients performed walking in three therapeutic conditions: (i) Off stimulation, (ii) STN stimulation (alone), and (iii) SNr stimulation (alone). SNr stimulation was achieved by stimulating the most caudal contact of the electrode. We recorded gait using three sensors (each containing a tri-axial accelerometer, gyroscope, and magnetometer) attached on both left and right ankle, and to the lumbar spine. STN stimulation improved both the spatial features (stride length, stride length variability) and the temporal parameters of gait. SNr stimulation improved temporal parameters of gait (swing time asymmetry). Correlation analysis suggested that patients with more medial localization of the SNr contact associated with a stronger regularization of gait. These results suggest that SNr stimulation might support temporal regularization of gait integration. [less ▲]

Detailed reference viewed: 105 (3 UL)
Full Text
Peer Reviewed
See detailGuidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)
Klionsky, D.; Krüger, Rejko UL; et al.

in Autophagy (2016), 12(1), 1-222

Detailed reference viewed: 352 (16 UL)
Full Text
Peer Reviewed
See detailLoss of DJ-1 impairs antioxidant response by altered glutamine and serine metabolism
Meiser, Johannes UL; Delcambre, Sylvie UL; Wegner, André UL et al

in Neurobiology of disease (2016), 89

The oncogene DJ-1 has been originally identified as a suppressor of PTEN. Further on, loss-of-function mutations have been described as a causative factor in Parkinson's disease (PD). DJ-1 has an ... [more ▼]

The oncogene DJ-1 has been originally identified as a suppressor of PTEN. Further on, loss-of-function mutations have been described as a causative factor in Parkinson's disease (PD). DJ-1 has an important function in cellular antioxidant responses, but its role in central metabolism of neurons is still elusive. We applied stable isotope assisted metabolic profiling to investigate the effect of a functional loss of DJ-1 and show that DJ-1 deficient neuronal cells exhibit decreased glutamine influx and reduced serine biosynthesis. By providing precursors for GSH synthesis, these two metabolic pathways are important contributors to cellular antioxidant response. Down-regulation of these pathways, as a result of loss of DJ-1 leads to an impaired antioxidant response. Furthermore, DJ-1 deficient mouse microglia showed a weak but constitutive pro-inflammatory activation. The combined effects of altered central metabolism and constitutive activation of glia cells raise the susceptibility of dopaminergic neurons towards degeneration in patients harboring mutated DJ-1. Our work reveals metabolic alterations leading to increased cellular instability and identifies potential new intervention points that can further be studied in the light of novel translational medicine approaches. [less ▲]

Detailed reference viewed: 280 (32 UL)
Full Text
Peer Reviewed
See detailMutation analyses and association studies to assess the role of the presenilin-associated rhomboid-like gene in Parkinson's disease
Wüst, Richard; Maurer, Brigitte; Hauser, Kathrin et al

in Neurobiology of Aging (2016), 39

Presenilin-associated rhomboid-like (PARL), a serine protease located in the inner mitochondrial membrane, has been shown to genetically interact and process PTEN-induced putative kinase a protein known ... [more ▼]

Presenilin-associated rhomboid-like (PARL), a serine protease located in the inner mitochondrial membrane, has been shown to genetically interact and process PTEN-induced putative kinase a protein known for its critical role in mitochondrial homeostasis and early-onset forms of Parkinson’s disease (PD). The identification of a PD-associated variant in the PARL gene (p.Ser77Asn) led us to assess the relevance of PARL for PD pathogenesis using a mutation screening of the coding sequences and adjacent intronic sequences. We investigated 3 single nucleotide polymorphisms (rs3792589, rs13091, and rs3732581), a synonymous base substitution (Leu79Leu) and the previously described p.Ser77Asn mutation, which were subsequently screened in more than 2000 patients and controls. Not detecting the p.Ser77Asn mutation in our cohort, nor a robust association between variations in the PARL gene and PD, the role of disease causing genetic variants in the PARL gene could not be further substantiated in our samples. Our findings indicate that PARL mutations are a rare cause of PD and genetic variants are neither strong nor common risk factors in PD. [less ▲]

Detailed reference viewed: 190 (30 UL)
Full Text
Peer Reviewed
See detailMitochondrial Defects and Neurodegeneration in Mice Overexpressing Wild Type or G399S Mutant HtrA2
Casadei, Nicolas; Sood, Poonan; Ulrich, Thomas et al

in Human Molecular Genetics (2016), 25(3), 459-71

The protease HtrA2 has a protective role inside mitochondria, but promotes apoptosis under stress. We previously identified the G399S HtrA2 mutation in Parkinson's disease (PD) patients and reported ... [more ▼]

The protease HtrA2 has a protective role inside mitochondria, but promotes apoptosis under stress. We previously identified the G399S HtrA2 mutation in Parkinson's disease (PD) patients and reported mitochondrial dysfunction in vitro. Mitochondrial dysfunction is a common feature of PD and related to neurodegeneration. Complete loss of HtrA2 has been shown to cause neurodegeneration in mice. However, the full impact of HtrA2 overexpression or the G399S mutation is still to be determined in vivo. Here, we report the first HtrA2 G399S transgenic mouse model. Our data suggest that the mutation has a dominant-negative effect. We also describe a toxic effect of wild-type (WT) HtrA2 overexpression. Only low overexpression of the G399S mutation allowed viable animals and we suggest that the mutant protein is likely unstable. This is accompanied by reduced mitochondrial respiratory capacity and sensitivity to apoptotic cell death. Mice overexpressing WT HtrA2 were viable, yet these animals have inhibited mitochondrial respiration and significant induction of apoptosis in the brain leading to motor dysfunction, highlighting the opposing roles of HtrA2. Our data further underscore the importance of HtrA2 as a key mediator of mitochondrial function and its fine regulatory role in cell fate. The location and abundance of HtrA2 is tightly controlled and, therefore, human mutations leading to gain- or loss of function could provide significant risk for PD-related neurodegeneration. [less ▲]

Detailed reference viewed: 260 (36 UL)
Full Text
Peer Reviewed
See detailTragbare und aktiv vom Parkinson-Patienten genutzte Technologie im hauslichen Umfeld: Was bringt die Zukunft?
Maetzler, W.; Krüger, Rejko UL; Muller, T. et al

in Fortschritte der Neurologie-Psychiatrie (2016), 84 Suppl 1

Parkinson’s disease (PD) is a multisystem disorder with a plethora of symptoms affecting quality of life in the home environment. Due to the rapid development of wearable technique in the health and ... [more ▼]

Parkinson’s disease (PD) is a multisystem disorder with a plethora of symptoms affecting quality of life in the home environment. Due to the rapid development of wearable technique in the health and fitness sector, an increasing number of such wearables are available to complement diagnostic strategies of PD symptoms not only in the clinical but also in the domestic environment. This development has clear advantages over clinical evaluation, as the latter is relatively subjective, time-consuming and costly, and provides only a snapshot of the condition. First results about the use of such technology for the assessment of PD symptoms (including bradykinesia, dyskinesia, tremor, daily activity and sleep behavior) in the domestic environment are promising. They suggest that these techniques can provide complementary information about the symptoms of PD patients, and have the potential to be included in future diagnostic workup concepts of routine care in PD. The use of such technique provides also the chance to more actively include patients into medical decision making processes. [less ▲]

Detailed reference viewed: 144 (26 UL)
Full Text
Peer Reviewed
See detailProdromal Markers in Parkinson's Disease: Limitations in Longitudinal Studies and Lessons Learned.
Heinzel, S.; Roeben, B.; Ben-Shlomo, Y. et al

in Frontiers in aging neuroscience (2016), 8

A growing body of evidence supports a prodromal neurodegenerative process preceding the clinical onset of Parkinson's disease (PD). Studies have identified several different prodromal markers that may ... [more ▼]

A growing body of evidence supports a prodromal neurodegenerative process preceding the clinical onset of Parkinson's disease (PD). Studies have identified several different prodromal markers that may have the potential to predict the conversion from healthy to clinical PD but use considerably different approaches. We systematically reviewed 35 longitudinal studies reporting prodromal PD features and evaluated the methodological quality across 10 different predefined domains. We found limitations in the following domains: PD diagnosis (57% of studies), prodromal marker assessments (51%), temporal information on prodromal markers or PD diagnosis (34%), generalizability of results (17%), statistical methods (accounting for at least age as confounder; 17%), study design (14%), and sample size (9%). However, no limitations regarding drop-out (or bias investigation), or report of inclusion/exclusion criteria or prodromal marker associations were revealed. Lessons learned from these limitations and additional aspects of current prodromal marker studies in PD are discussed to provide a basis for the evaluation of findings and the improvement of future research in prodromal PD. The observed heterogeneity of studies, limitations and analyses might be addressed in future longitudinal studies using a, yet to be established, modular minimal set of assessments improving comparability of findings and enabling data sharing and combined analyses across studies. [less ▲]

Detailed reference viewed: 137 (0 UL)
Full Text
Peer Reviewed
See detailAiming for Study Comparability in Parkinson's Disease: Proposal for a Modular Set of Biomarker Assessments to be Used in Longitudinal Studies.
Lerche, S.; Heinzel, S.; Alves, G. W. et al

in Frontiers in aging neuroscience (2016), 8

Detailed reference viewed: 123 (0 UL)
Full Text
Peer Reviewed
See detailAdvanced stages of PD: interventional therapies and related patient-centered care
Krüger, Rejko UL; Hilker, Rudiger; Winkler, Christian et al

in Journal of neural transmission (Vienna, Austria : 1996) (2016)

During the last decades, symptomatic treatment of motor symptoms of Parkinson's disease (PD) improved continuously and is reflected by long-range independency of the patient during the disease course ... [more ▼]

During the last decades, symptomatic treatment of motor symptoms of Parkinson's disease (PD) improved continuously and is reflected by long-range independency of the patient during the disease course. However, advanced stages of PD still represent an important challenge to patients, caregivers and treating physicians. In patients with advanced PD, interventional therapy strategies are increasingly applied. These device-related treatment strategies using pump-based continuous dopaminergic stimulation (CDS) or deep brain stimulation (DBS) opened new treatment options especially if motor complications predominate. Well-designed clinical studies on these interventional therapeutic approaches provided class 1 evidence for the efficacy of DBS and CDS in advanced PD and opened new perspectives for their use in earlier disease stages also. Therefore, careful selection of patients amenable to the (semi)invasive therapy options becomes more and more important and requires an interdisciplinary setting that accounts for (i) optimal patient information and awareness, (ii) selection of best individual treatment modality, (iii) training of relatives and caregivers, (iv) management of complications, and (v) follow-up care. Here, we address these topics by summarizing current state-of-the-art in patient selection, providing specificities of treatment options and troubleshooting, and defining steps towards an optimized patient-centered care. Interventional therapies pioneer in the area of individualized treatment approaches for PD, and may be complemented in the future by biomarker-based improved stratification and by closed-loop systems for adaptive therapeutic strategies. In the present review, we summarize the proceedings of an Expert Workshop on Parkinson's disease held on November 22, 2014 in Frankfurt, Germany. [less ▲]

Detailed reference viewed: 188 (9 UL)
Full Text
Peer Reviewed
See detailNeuromuscular correlates of subthalamic stimulation and upper limb freezing in Parkinson's disease.
Scholten, M.; Klotz, R.; Plewnia, C. et al

in Clinical Neurophysiology (2016)

OBJECTIVE: The pathophysiology of deep brain stimulation mechanisms and resistant freezing phenomena in idiopathic Parkinson's disease (iPD) remains incompletely understood. Further studies on the ... [more ▼]

OBJECTIVE: The pathophysiology of deep brain stimulation mechanisms and resistant freezing phenomena in idiopathic Parkinson's disease (iPD) remains incompletely understood. Further studies on the neuromuscular substrates are needed. METHODS: We analyzed 16 patients with advanced iPD and bilateral subthalamic nucleus stimulation, and 13 age- and gender-matched healthy controls. Patients were tested after overnight withdrawal of medication with 'stimulation off' (StimOff) and 'stimulation on' (StimOn). Subjects performed continuous tapping of the right index finger with simultaneous recordings of biomechanical registration, EMG of finger flexors and extensors, and EEG. First, we analyzed EEG and EMG spectral measures comparing StimOff with healthy controls and StimOff with StimOn (irrespective of freezing). Second, we contrasted 'regular (unimpaired) tapping' and 'freezing' resistant to subthalamic neurostimulation as obtained in StimOn. RESULTS: iPD showed increased intermuscular coherence around 8Hz in StimOff that was reduced in StimOn. This 8Hz muscular activity was not coherent to cortical activity. 'Freezing' episodes showed increased muscle activity of finger flexors and extensors at 6-9Hz, and increased cortical activity at 7-11Hz. During transition from regular tapping to 'freezing' the cortical activity first increased over the left sensorimotor area followed by a spread to the left frontal and right parietal areas. CONCLUSIONS: We identified neuromuscular motor network features of subthalamic neurostimulation therapy and resistant upper limb freezing that point to increased low-frequency muscular and cortical activity. SIGNIFICANCE: Together, our findings demonstrate several motor network abnormalities associated with upper limb freezing that may translate into future research on freezing of gait in iPD. [less ▲]

Detailed reference viewed: 154 (13 UL)
Full Text
Peer Reviewed
See detailAlpha-synuclein gene variants may predict neurostimulation outcome.
Weiss, D.; Herrmann, S.; Wang, Lin UL et al

in Movement disorders : official journal of the Movement Disorder Society (2016)

Detailed reference viewed: 155 (13 UL)
Full Text
Peer Reviewed
See detailCost-Effectiveness of Neurostimulation in Parkinson's Disease With Early Motor Complications
Dams, J; Balzer-Geldsetzer, M; Siebert, U et al

in Movement Disorders : Official Journal of the Movement Disorder Society (2016), 31(8), 1183-1191

Background: Recent research efforts have focused on the effects of deep brain stimulation of the subthalamic nucleus (STN DBS) for selected patients with mild-to-moderate PD experiencing motor ... [more ▼]

Background: Recent research efforts have focused on the effects of deep brain stimulation of the subthalamic nucleus (STN DBS) for selected patients with mild-to-moderate PD experiencing motor complications. Objectives: We assessed the cost utility of subthalamic DBS compared with the best medical treatment for German patients below the age of 61 with early motor complications of PD. Methods: We applied a previously published Markov model that integrated health utilities based on EuroQoL and direct costs over patients’ lifetime adjusted to the German health care payer perspective (year of costing: 2013). Effectiveness was evaluated using the Parkinson’s Disease Questionnaire 39 summary index. We performed sensitivity analyses to assess uncertainty. Results: In the base-case analysis, the incremental cost-utility ratio for STN DBS compared to best medical treatment was 22,700 Euros per quality-adjusted life year gained. The time to, and costs for, battery exchange had a major effect on the incremental cost-utility ratios, but never exceeded a threshold of 50,000Euros per quality-adjusted life year. Conclusions: Our decision analysis supports the fact that STN DBS at earlier stages of the disease is cost-effective in patients below the age of 61 when compared with the best medical treatment in the German health care system. This finding was supported by detailed sensitivity analyses reporting robust results. Whereas the EARLYSTIM study has shown STN DBS to be superior to medical therapy with respect to quality of life for patients with early motor complications, this further analysis has shown its cost-effectiveness. [less ▲]

Detailed reference viewed: 260 (4 UL)