References of "Grotz, Joel"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailCognitive Spectrum Utilization in Ka Band Multibeam Satellite Communications
Maleki, Sina UL; Chatzinotas, Symeon UL; Evans, Barry et al

in IEEE Communications Magazine (2015), 53(3), 24-29

Multibeam satellite networks in Ka band have been designed to accommodate the increasing traffic demands of the coming years. However, these systems are spectrum limited due to the current spectrum ... [more ▼]

Multibeam satellite networks in Ka band have been designed to accommodate the increasing traffic demands of the coming years. However, these systems are spectrum limited due to the current spectrum allocation policies. This paper investigates the potentials of applying cognitive radio techniques in satellite communications in order to increase the spectrum opportunities for future generation of satellite networks without interfering operation of incumbent services. These extra spectrum opportunities can potentially amount to 2.4 GHz of bandwidth in downlink, and to 2 GHz of bandwidth in uplink for high density fixed satellite services (HDFSS). [less ▲]

Detailed reference viewed: 365 (19 UL)
Full Text
Peer Reviewed
See detailSpectrum Awareness and Exploitation for Cognitive Satellite Communications
Guidotti, Alessandro; Icolari, Vincenzo; Tarchi, Danielle et al

in European Conference on Networks and Communications (EuCNC), Paris, France, Jun 2015. (2015)

Detailed reference viewed: 101 (3 UL)
Full Text
Peer Reviewed
See detailImplementation Issues of Cognitive Radio Techniques for Ka-band (17.7-19.7 GHZ) SatComs
Sharma, Shree Krishna UL; Maleki, Sina UL; Chatzinotas, Symeon UL et al

in Proceedings of 7th ASMS/13th SPSC (2014, September)

The usable satellite spectrum has become scarce due to continuously increasing demand for broadband multimedia, broadcast and interactive services. In this context, investigating efficient spectrum ... [more ▼]

The usable satellite spectrum has become scarce due to continuously increasing demand for broadband multimedia, broadcast and interactive services. In this context, investigating efficient spectrum coexistence techniques is a crucial challenge in order to enhance the spectral efficiency of future satellite systems. Herein, we study a satellite-terrestrial coexistence scenario where a Fixed Satellite Service (FSS) downlink coexists with the Fixed Service (FS) point to point microwave links in the Ka-band (17.7-19.7 GHz). First, we identify various practical challenges and provide possible solutions in order to allow this coexistence. Then we propose four different sensing and avoidance schemes in order to protect FSS satellite terminals from the harmful FS interference. Further, we evaluate the performance of one of the proposed solutions in the considered scenario with the help of theoretical and numerical analysis. More specifically, we focus on harmful FS detection problem in order to guarantee the sufficient protection of FSS terminals. It is shown that the FS harmful interference can be reliably detected with the help of an additional dipole antenna and this solution further overcomes the noise uncertainty problem encountered while sensing with the satellite dish. [less ▲]

Detailed reference viewed: 224 (20 UL)
Full Text
Peer Reviewed
See detailCognitive Radio for Ka Band Satellite Communications
Maleki, Sina UL; Chatzinotas, Symeon UL; Sharma, Shree Krishna UL et al

in 32nd AIAA International Communications Satellite Systems Conference, August 2014 (2014, August)

The satellite communication data traffic is increasing dramatically over the coming years. High throughput multibeam satellite networks in Ka band are potentially able to accommodate the upcoming high ... [more ▼]

The satellite communication data traffic is increasing dramatically over the coming years. High throughput multibeam satellite networks in Ka band are potentially able to accommodate the upcoming high data rate demands. However, there is only 500 MHz of exclusive band for download and the same amount for upload. This spectrum shortage impose a barrier in order to satisfy the increasing demands. Cognitive satellite communication in Ka band is considered in this paper in order to potentially provide an additional 4.4 GHz bandwidth for downlink and uplink fixed-satellite-services. In this way, it is expected that the problem of spectrum scarcity for future generation of satellite networks is alleviated to a great extent. The underlying scenarios and enabling techniques are discussed in detail, and finally we investigate the implementation issues related to the considered techniques. [less ▲]

Detailed reference viewed: 264 (19 UL)
Full Text
Peer Reviewed
See detailFP7 PROJECT CoRaSat intermediate results and standardization strategy: Cognitive radio techniques in Ka band SatCom context
Chumberre, Nicolas; Evans, Barry; Vanelli-Coralli, Alessandro et al

in Proc. European Conference on Networks and Communications (EuCNC) (2014, June)

Detailed reference viewed: 372 (8 UL)
Full Text
Peer Reviewed
See detailTechnical Challenges for Cognitive Radio Application in Satellite Communications
Tarchi, Daniele; Guidotti, Alessandro; Icolari, Vincenzo et al

in 9th International Conference on Cognitive Radio Oriented Wireless Networks and Communications (CROWNCOM), 2014 (2014, June)

During the last years, spectrum scarcity has become one of the major issues for the development of new communication systems. Cognitive Radio (CR) approaches have gained an ever increasing attention from ... [more ▼]

During the last years, spectrum scarcity has become one of the major issues for the development of new communication systems. Cognitive Radio (CR) approaches have gained an ever increasing attention from system designers and operators, as they promise a more efficient utilization of the available spectral resources. In this context, while the application of CRs in terrestrial scenarios has been widely considered from both theoretical and practical viewpoints, their exploitation in satellite communications is still a rather unexplored area. In this paper, we address the definition of several satellite communications scenarios, where cognitive radio techniques promise to introduce significant benefits, and we discuss the major enablers and the associated challenges [less ▲]

Detailed reference viewed: 207 (7 UL)
Full Text
Peer Reviewed
See detailOverloaded Satellite Receiver using SIC with Hybrid Beamforming and ML detection
Abu Shaban, Zohair UL; Mehrpouyan, Hani; Grotz, Joel et al

in 14th Workshop on Signal Processing Advances in Wireless Communications (SPAWC) (2013, June)

In this paper, a new receiver structure that is intended to detect the signals from multiple adjacent satellites in the presence of other interfering satellites is proposed. We tackle the worst case ... [more ▼]

In this paper, a new receiver structure that is intended to detect the signals from multiple adjacent satellites in the presence of other interfering satellites is proposed. We tackle the worst case interference conditions, i.e., it is assumed that uncoded signals that fully overlap in frequency arrive at a multiple-element small-size parabolic antenna in a spatially correlated noise environment. The proposed successive interference cancellation (SIC) receiver, denoted by SIC Hy/ML, employs hybrid beamforming and disjoint maximum likelihood (ML) detection. Depending on the individual signals spatial position, the proposed SIC Hy/ML scheme takes advantage of two types of beamformers: a maximum ratio combining (MRC) beamformer and a compromised array response (CAR) beamformer. The performance of the proposed receiver is compared to an SIC receiver that uses only MRC beamforming scheme with ML detection for all signals, a joint ML detector, and a minimum mean square error detector. It is found that SIC Hy/ML outperforms the other schemes by a large margin. [less ▲]

Detailed reference viewed: 233 (25 UL)
Full Text
Peer Reviewed
See detailLinear and nonlinear techniques for multibeam joint processing in satellite communications
Christopoulos, Dimitrios UL; Chatzinotas, Symeon UL; Zheng, Gan UL et al

in EURASIP Journal on Wireless Communications and Networking (2012), 2012(162),

Existing satellite communication standards such as DVB-S2 operate under highly-efficient adaptive coding and modulation schemes thus making significant progress in improving the spectral efficiencies of ... [more ▼]

Existing satellite communication standards such as DVB-S2 operate under highly-efficient adaptive coding and modulation schemes thus making significant progress in improving the spectral efficiencies of digital satellite broadcast systems. However, the constantly increasing demand for broadband and interactive satellite links emanates the need to apply novel interference mitigation techniques, striving towards Terabit throughput. In this direction, the objective of the present contribution is to investigate joint multiuser processing techniques for multibeam satellite systems. In the forward link, the performance of linear precoding is investigated with optimal non-linear precoding (i.e. Dirty Paper Coding) acting as the upper performance limit. To this end, the resulting power and precoder design problems are approached through optimization methods. Similarly, in the return link the concept of linear filtering (i.e. Linear Minimum Mean Square Error) is studied with the optimal successive interference cancellation acting as the performance limit. The derived capacity curves for both scenarios are compared to conventional satellite systems where beams are processed independently and interbeam interference is mitigated through a four color frequency reuse scheme, in order to quantify the potential gain of the proposed techniques. [less ▲]

Detailed reference viewed: 312 (29 UL)