![]() Maccaferri, Nicolò ![]() in Journal of Physics. Conference Series (2018), 961 We investigate an architecture where a plasmonic vortex excited in a gold surface propagates on an adiabatically tapered magnetic tip and detaches to the far-field while carrying a well-defined optical ... [more ▼] We investigate an architecture where a plasmonic vortex excited in a gold surface propagates on an adiabatically tapered magnetic tip and detaches to the far-field while carrying a well-defined optical angular momentum. We analyze the out-coming light and show that, despite generally high losses of flat magnetic surface, our 3D structure exhibits high energy throughput. Moreover, we show that once a magneto-optical activity is activated inside the magnetic tip a modulation of the total power transmittance is possible. [less ▲] Detailed reference viewed: 113 (1 UL)![]() ![]() Maccaferri, Nicolò ![]() in Applied Physics Letters (2017), 111(20), 201104 We theoretically investigate the generation of far-field propagating optical beams with a desired orbital angular momentum by using an archetypical magnetoplasmonic tip surrounded by a gold spiral slit ... [more ▼] We theoretically investigate the generation of far-field propagating optical beams with a desired orbital angular momentum by using an archetypical magnetoplasmonic tip surrounded by a gold spiral slit. The use of a magnetic material can lead to important implications once magneto-optical activity is activated through the application of an external magnetic field. The physical model and the numerical study presented here introduce the concept of magnetically tunable plasmonic vortex lens, namely a magnetoplasmonic vortex lens, which ensures a tunable selectivity in the polarization state of the generated nanostructured beam. The presented system provides a promising platform for a localized excitation of plasmonic vortices followed by their beaming in the far-field with an active modulation of both light's transmission and helicity. Published by AIP Publishing. [less ▲] Detailed reference viewed: 79 (5 UL)![]() ![]() ; ; et al in Proceedings of SPIE : The International Society for Optical Engineering (2017), 10346 Nanoporous gold is a very promising material platform for several plasmonic applications. Nanoporous gold can be formed by dealloying Au–Ag alloys, previously grown by means of Ag-Au co-sputtering. The ... [more ▼] Nanoporous gold is a very promising material platform for several plasmonic applications. Nanoporous gold can be formed by dealloying Au–Ag alloys, previously grown by means of Ag-Au co-sputtering. The optical response is completely determined by the nanostructured film features, that only depend on the initial alloy composition. It has been extensively used as SERS substrate both as thin film and nanofabricated fancy designs. Here we explore the potential application of nanoporous gold as SERS substrate as it is coupled and decorated with Ag nanoparticles. Significant enhancement has been observed in comparison with bare nanoporous film. [less ▲] Detailed reference viewed: 109 (0 UL) |
||