References of "Dale, Phillip 50001445"
     in
Bookmark and Share    
See detailSemiconductors for Photovoltaic Devices:Electrochemical Approaches using Ionic Liquids
Dale, Phillip UL

Presentation (2014, September)

Detailed reference viewed: 108 (2 UL)
Full Text
Peer Reviewed
See detailElectrochemical deposition as a unique solution processing method for insoluble organic optoelectronic materials†
Allwright, Emily; Berg, Dominik UL; Djemour, Rabie UL et al

in Journal of Materials Chemistry C (2014), 2

Detailed reference viewed: 97 (1 UL)
Full Text
Peer Reviewed
See detailQuantification of surface ZnSe in Cu2ZnSnSe4-based solar cells by analysis of the spectral response
Colombara, Diego UL; Robert, Erika UL; Crossay, Alexandre UL et al

in Solar Energy Materials & Solar Cells (2014), 123

Absorber layers consisting of Cu2ZnSnSe4 (CZTSe) and surface ZnSe in variable ratios were prepared by selenization of electroplated Cu/Sn/Zn precursors and completed into full devices with up to 5.6 ... [more ▼]

Absorber layers consisting of Cu2ZnSnSe4 (CZTSe) and surface ZnSe in variable ratios were prepared by selenization of electroplated Cu/Sn/Zn precursors and completed into full devices with up to 5.6 % power conversion efficiency. The loss of short circuit current density for samples with increasing ZnSe content is consistent with an overall reduction of spectral response, pointing to a ZnSe current blocking behavior. A feature in the spectral response centered around 3 eV was identified and attributed to light absorption by ZnSe. A model is proposed to account for additional collection of the carriers generated underneath ZnSe capable of diffusing across to the space charge region. The model satisfactorily reproduces the shape of the spectral response and the estimated ZnSe surface coverage is in good qualitative agreement with analysis of the Raman spectral mapping. The model emphasizes the importance of the ZnSe morphology on the spectral response, and its consequences on the solar cell device performance. [less ▲]

Detailed reference viewed: 480 (10 UL)
See detailChemical based approaches for kesterites: A dream or a reality?
Dale, Phillip UL

Presentation (2014, March 24)

Detailed reference viewed: 58 (0 UL)
Full Text
Peer Reviewed
See detail4-Amino-1,2,4-triazole: Playing a key role in the chemical deposition of Cu–In–Ga metal layers for photovoltaic applications.
Berner, Ulrich; Widenmeyer, Markus; Engler, Patrick et al

in Thin Solid Films (2014)

Detailed reference viewed: 133 (1 UL)
Full Text
Peer Reviewed
See detailCuInSe2 semiconductor formation by laser annealing
Meadows, Helen UL; Regesch, David UL; Thevenin, Maxime UL et al

in Thin Solid Films (2014)

Detailed reference viewed: 122 (1 UL)
Full Text
Peer Reviewed
See detailDifferent Bandgaps in Cu2ZnSnSe4 : a high temperature coevaporation study
Redinger, Alex UL; Sendler, Jan UL; Djemour, Rabie UL et al

in IEEE Journal of Photovoltaics (2014)

Detailed reference viewed: 165 (8 UL)
Full Text
Peer Reviewed
See detailCHAPTER 5: Thin-film Photovoltaics Based on Earth-abundant Materials
Colombara, Diego UL; Dale, Phillip UL; Peter, Laurence et al

in Nozik, Arthur J.; Beard, Matthew C.; Conibeer, Gavin (Eds.) Advanced Concepts in Photovoltaics (2014)

Detailed reference viewed: 345 (31 UL)
Full Text
Peer Reviewed
See detailSingle Second Laser Annealed CuInSe2 Semiconductors from Electrodeposited Precursors as Absorber Layers for Solar Cells
Meadows, Helen UL; Bathia, Ashish; Depredurand, Valérie UL et al

in Journal of Physical Chemistry C (2014), 118 (3)

Detailed reference viewed: 161 (10 UL)
Full Text
Peer Reviewed
See detailComposition dependent characterization of copper indium diselenide thin film solar cells synthesized from electrodeposited binary selenide precursor stacks
Fischer, Johannes; Larsen, Jes K. UL; Guillot, Jerôme et al

in Solar Energy Materials & Solar Cells (2014), 126

Detailed reference viewed: 155 (6 UL)
Full Text
Peer Reviewed
See detailSemiconductors for Photovoltaic Devices: Electrochemical Approaches using Ionic Liquids
Dale, Phillip UL; Malaquias, Joao Corujo Branco UL; Steichen, Marc UL

in ECS Transactions (2014), 58(18), 1-12

Can electrodeposition be used to create high quality p-type inorganic compound semiconductors for photovoltaic applications? Thin film photovoltaic devices offer similar power conversion efficiencies to ... [more ▼]

Can electrodeposition be used to create high quality p-type inorganic compound semiconductors for photovoltaic applications? Thin film photovoltaic devices offer similar power conversion efficiencies to polycrystalline silicon devices and have the inherent advantages of consisting of less material and requiring less energy expenditure during processing. Thin film devices consist of a semiconductor pn heterojunction with front and back contacts to extract the excited charge carriers. The materials properties of the p-type layer are the most stringent, and determine the overall performance of the device. Common p-type semiconductors are CdTe, Cu(In,Ga)Se2, and Cu2ZnSn(S,Se)4. Typically the p-type semiconductor must form a continuous dense single phase layer two micron thick over metre squared areas. Most commercial producers of thin film photovoltaic modules choose evaporation or sputtering methods to deposit this layer. Of importance is the speed, cost, and quality of deposition. Electrodeposition offers the ability to deposit thin films over large areas with high materials usage, potentially at high speed. Can electrodeposition be used to create high quality p-type inorganic compound semiconductors? This talk will show that it is possible to directly deposit a working p-type semiconductor, but that a two step approach of depositing metals and then annealing them in a reactive atmosphere is a simpler, easier, and more robust approach. Both approaches can lead to semiconductors which provide working photovoltaic devices. However, improvements to the electrodepostion process are still required and the main challenges are outlined below. Challenges in directly electrodepositing a p-type semiconductor are (i) the inherent lack of electrons necessary for a reductive deposition process and (ii) the low thermal energy available at normal deposition temperatures to create micron sized well ordered crystals. Challenges for directly electrodepositing the metal alloys CuInGa or CuSnZn from aqueous solution are (iii) competition with hydrogen reduction leading to inefficient deposition, embrittlement, and dendritic growth (iv) control of the alloy composition over the micrometer and centimeter length scales due to the different reduction potentials, nucleation densities, and diffusion coefficients. In this talk it will be shown how these challenges can be met by using ionic liquids to replace aqueous solvents. Ionic liquids offer larger electrochemical windows, higher processing temperatures, and the choice of new forms of starting reagent. Furthermore, task specific ionic liquids or liquid metal salts, may even be employed to allow extremely high speed deposition. [less ▲]

Detailed reference viewed: 133 (2 UL)
Full Text
Peer Reviewed
See detailSimplified formation process for Cu2ZnSnS4-based solar cells
Berg, Dominik UL; Crossay, Alexandre UL; Guillot, Jérôme et al

in Thin Solid Films (2014), 573

Detailed reference viewed: 184 (1 UL)
Full Text
See detailSemiconductor material and method of production
Berg, Dominik; Redinger, Alex UL; Dale, Phillip UL et al

Patent (2013)

Detailed reference viewed: 179 (8 UL)
Full Text
Peer Reviewed
See detailThe Effect of Soft Pre-Annealing of Differently Stacked Cu-Sn-Zn Precursors on the Quality of Cu2ZnSnSe4 Absorbers
Arasimowicz, Monika UL; Thevenin, Maxime UL; Dale, Phillip UL

in Materials Research Society Symposia Proceedings. (2013), 1538

Detailed reference viewed: 150 (11 UL)