References of "Dale, Phillip 50001445"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailPrediction of Photovoltaic Cu(In,Ga)Se2 p-n Device Performance by forward Bias Electrochemical Analysis of Only the p-Type Cu(In,Ga)Se2 Films
Colombara, Diego UL; Bertram, Tobias UL; Depredurand, Valérie UL et al

in Electrochemical Society Transactions (2015), 66(6), 19-25

This work is an attempt to rate the quality of Mo/Cu(In,Ga)Se2 films intended for fabrication of photovoltaic devices. The procedure is based on the simple current-voltage electrochemical analysis of the ... [more ▼]

This work is an attempt to rate the quality of Mo/Cu(In,Ga)Se2 films intended for fabrication of photovoltaic devices. The procedure is based on the simple current-voltage electrochemical analysis of the bilayer in a Eu2+/3+-containing electrolyte solution. Two series of bilayer samples were tested electrochemically, while sister samples were completed into Mo/Cu(In,Ga)Se2/CdS/i-ZnO/Al:ZnO/Ni-Al solid state devices and their current-voltage characteristics measured in the dark. A correlation was found between the reverse saturation current density of the solid state devices and an analogous parameter extracted from the electrochemical response in forward bias. While Eu2+ was found to be metastable in water posing restrictions to the application, reproducible measurements were achieved with a methanol-based solution. The intrinsic simplicity of the proposed methodology makes it particularly suitable for the implementation of a low-cost diagnostic tool. [less ▲]

Detailed reference viewed: 165 (8 UL)
Full Text
Peer Reviewed
See detailDifferent Bandgaps in Cu2ZnSnSe4: A High Temperature Coevaporation Study
Redinger, Alex UL; Sendler, Jan UL; Djemour, Rabie et al

in IEEE Journal of Photovoltaics (2015), 5(2), 641-648

We present a high-temperature Cu2ZnSnSe4 coevaporation study, where solar cells with a power conversion efficiency of 7.1 have been achieved. The process is monitored with laser light scattering in order ... [more ▼]

We present a high-temperature Cu2ZnSnSe4 coevaporation study, where solar cells with a power conversion efficiency of 7.1 have been achieved. The process is monitored with laser light scattering in order to follow the incorporation of the Sn into the film. We observe the segregation of ZnSe at the Mo/CZTSe interface. Optical analysis has been carried out with photoluminescence and spectrophotometry. We observe strong band tailing and a bandgap, which is significantly lower than in other reported efficient CZTSe absorbers. The photoluminescence at room temperature is lower than the bandgap due to the existence of a large quantity of tail states. Finally, we present effects of low-temperature postannealing of the absorbers on ordering of the Cu/Zn atoms in CZTSe and solar cell parameters. We observe strong changes in all solar cell parameters upon annealing. The efficiency of the annealed devices is significantly reduced, although ordering is improved compared with ones made from nonannealed absorbers. [less ▲]

Detailed reference viewed: 154 (1 UL)
Full Text
Peer Reviewed
See detailCu2ZnSnSe4 device obtained by formate chemistry for metallic precursor layer fabrication
Tombolato, Sara; Berner, Ulrich Maximilian UL; Colombara, Diego UL et al

in Solar Energy (2015), 116

Detailed reference viewed: 184 (6 UL)
Full Text
Peer Reviewed
See detailPrediction of photovoltaic p-n device short circuit current by photoelectrochemical analysis of p-type CIGSe films
Colombara, Diego UL; Crossay, Alexandre UL; Regesch, David UL et al

in Electrochemistry Communications (2014), 48

The quality control of individual semiconductor thin films during fabrication of multiple layers is important for industry and academia. The ultimate aim of this research is to predict the efficiency of p ... [more ▼]

The quality control of individual semiconductor thin films during fabrication of multiple layers is important for industry and academia. The ultimate aim of this research is to predict the efficiency of p-–n junction solar cells by photoelectrochemical analysis of the bare p-type semiconductor. A linear correlation between the photocurrent measured electrochemically on Cu(In,Ga)Se2 absorber layers through a Eu3+ electrolyte junction and short circuit current and efficiency of the corresponding solid state devices is found. However, the correlation is complicated by pronounced recombination at the semiconductor/electrolyte interface, while the solid state interface behaves more ideally. [less ▲]

Detailed reference viewed: 203 (9 UL)
See detailSemiconductors for Photovoltaic Devices:Electrochemical Approaches using Ionic Liquids
Dale, Phillip UL

Presentation (2014, September)

Detailed reference viewed: 126 (2 UL)
Full Text
Peer Reviewed
See detailElectrochemical deposition as a unique solution processing method for insoluble organic optoelectronic materials†
Allwright, Emily; Berg, Dominik UL; Djemour, Rabie UL et al

in Journal of Materials Chemistry C (2014), 2

Detailed reference viewed: 119 (1 UL)
Full Text
Peer Reviewed
See detailQuantification of surface ZnSe in Cu2ZnSnSe4-based solar cells by analysis of the spectral response
Colombara, Diego UL; Robert, Erika UL; Crossay, Alexandre UL et al

in Solar Energy Materials & Solar Cells (2014), 123

Absorber layers consisting of Cu2ZnSnSe4 (CZTSe) and surface ZnSe in variable ratios were prepared by selenization of electroplated Cu/Sn/Zn precursors and completed into full devices with up to 5.6 ... [more ▼]

Absorber layers consisting of Cu2ZnSnSe4 (CZTSe) and surface ZnSe in variable ratios were prepared by selenization of electroplated Cu/Sn/Zn precursors and completed into full devices with up to 5.6 % power conversion efficiency. The loss of short circuit current density for samples with increasing ZnSe content is consistent with an overall reduction of spectral response, pointing to a ZnSe current blocking behavior. A feature in the spectral response centered around 3 eV was identified and attributed to light absorption by ZnSe. A model is proposed to account for additional collection of the carriers generated underneath ZnSe capable of diffusing across to the space charge region. The model satisfactorily reproduces the shape of the spectral response and the estimated ZnSe surface coverage is in good qualitative agreement with analysis of the Raman spectral mapping. The model emphasizes the importance of the ZnSe morphology on the spectral response, and its consequences on the solar cell device performance. [less ▲]

Detailed reference viewed: 511 (11 UL)
See detailChemical based approaches for kesterites: A dream or a reality?
Dale, Phillip UL

Presentation (2014, March 24)

Detailed reference viewed: 68 (0 UL)
Full Text
Peer Reviewed
See detailSimplified formation process for Cu2ZnSnS4-based solar cells
Berg, Dominik UL; Crossay, Alexandre UL; Guillot, Jérôme et al

in Thin Solid Films (2014), 573

Detailed reference viewed: 261 (1 UL)
Full Text
Peer Reviewed
See detail4-Amino-1,2,4-triazole: Playing a key role in the chemical deposition of Cu–In–Ga metal layers for photovoltaic applications.
Berner, Ulrich; Widenmeyer, Markus; Engler, Patrick et al

in Thin Solid Films (2014)

Detailed reference viewed: 161 (3 UL)
Full Text
Peer Reviewed
See detailCuInSe2 semiconductor formation by laser annealing
Meadows, Helen UL; Regesch, David UL; Thevenin, Maxime UL et al

in Thin Solid Films (2014)

Detailed reference viewed: 138 (1 UL)
Full Text
Peer Reviewed
See detailDifferent Bandgaps in Cu2ZnSnSe4 : a high temperature coevaporation study
Redinger, Alex UL; Sendler, Jan UL; Djemour, Rabie UL et al

in IEEE Journal of Photovoltaics (2014)

Detailed reference viewed: 208 (8 UL)
Full Text
Peer Reviewed
See detailSingle Second Laser Annealed CuInSe2 Semiconductors from Electrodeposited Precursors as Absorber Layers for Solar Cells
Meadows, Helen UL; Bathia, Ashish; Depredurand, Valérie UL et al

in Journal of Physical Chemistry. C, Nanomaterials and interfaces (2014), 118 (3)

Detailed reference viewed: 192 (12 UL)
Full Text
Peer Reviewed
See detailCHAPTER 5: Thin-film Photovoltaics Based on Earth-abundant Materials
Colombara, Diego UL; Dale, Phillip UL; Peter, Laurence et al

in Nozik, Arthur J.; Beard, Matthew C.; Conibeer, Gavin (Eds.) Advanced Concepts in Photovoltaics (2014)

Detailed reference viewed: 371 (32 UL)
Full Text
Peer Reviewed
See detailSemiconductors for Photovoltaic Devices: Electrochemical Approaches using Ionic Liquids
Dale, Phillip UL; Malaquias, Joao Corujo Branco UL; Steichen, Marc UL

in ECS Transactions (2014), 58(18), 1-12

Can electrodeposition be used to create high quality p-type inorganic compound semiconductors for photovoltaic applications? Thin film photovoltaic devices offer similar power conversion efficiencies to ... [more ▼]

Can electrodeposition be used to create high quality p-type inorganic compound semiconductors for photovoltaic applications? Thin film photovoltaic devices offer similar power conversion efficiencies to polycrystalline silicon devices and have the inherent advantages of consisting of less material and requiring less energy expenditure during processing. Thin film devices consist of a semiconductor pn heterojunction with front and back contacts to extract the excited charge carriers. The materials properties of the p-type layer are the most stringent, and determine the overall performance of the device. Common p-type semiconductors are CdTe, Cu(In,Ga)Se2, and Cu2ZnSn(S,Se)4. Typically the p-type semiconductor must form a continuous dense single phase layer two micron thick over metre squared areas. Most commercial producers of thin film photovoltaic modules choose evaporation or sputtering methods to deposit this layer. Of importance is the speed, cost, and quality of deposition. Electrodeposition offers the ability to deposit thin films over large areas with high materials usage, potentially at high speed. Can electrodeposition be used to create high quality p-type inorganic compound semiconductors? This talk will show that it is possible to directly deposit a working p-type semiconductor, but that a two step approach of depositing metals and then annealing them in a reactive atmosphere is a simpler, easier, and more robust approach. Both approaches can lead to semiconductors which provide working photovoltaic devices. However, improvements to the electrodepostion process are still required and the main challenges are outlined below. Challenges in directly electrodepositing a p-type semiconductor are (i) the inherent lack of electrons necessary for a reductive deposition process and (ii) the low thermal energy available at normal deposition temperatures to create micron sized well ordered crystals. Challenges for directly electrodepositing the metal alloys CuInGa or CuSnZn from aqueous solution are (iii) competition with hydrogen reduction leading to inefficient deposition, embrittlement, and dendritic growth (iv) control of the alloy composition over the micrometer and centimeter length scales due to the different reduction potentials, nucleation densities, and diffusion coefficients. In this talk it will be shown how these challenges can be met by using ionic liquids to replace aqueous solvents. Ionic liquids offer larger electrochemical windows, higher processing temperatures, and the choice of new forms of starting reagent. Furthermore, task specific ionic liquids or liquid metal salts, may even be employed to allow extremely high speed deposition. [less ▲]

Detailed reference viewed: 177 (3 UL)
Full Text
Peer Reviewed
See detailComposition dependent characterization of copper indium diselenide thin film solar cells synthesized from electrodeposited binary selenide precursor stacks
Fischer, Johannes; Larsen, Jes K. UL; Guillot, Jerôme et al

in Solar Energy Materials & Solar Cells (2014), 126

Detailed reference viewed: 181 (7 UL)