Browse ORBi

- What it is and what it isn't
- Green Road / Gold Road?
- Ready to Publish. Now What?
- How can I support the OA movement?
- Where can I learn more?

ORBi

Weakening the tight coupling between geometry and simulation in isogeometric analysis Bordas, Stéphane ; Tomar, Satyendra ; et al Scientific Conference (2016, June 05) In the standard paradigm of isogeometric analysis, the geometry and the simulation spaces are tightly integrated, i.e. the same non-uniform rational B-splines (NURBS) space, which is used for the geometry ... [more ▼] In the standard paradigm of isogeometric analysis, the geometry and the simulation spaces are tightly integrated, i.e. the same non-uniform rational B-splines (NURBS) space, which is used for the geometry representation of the domain, is employed for the numerical solution of the problem over the domain. However, there are situations where this tight integration is a bane rather than a boon. Such situations arise where, e.g., (1) the geometry of the domain is simple enough to be represented by low order NURBS, whereas the unknown (exact) solution of the problem is sufficiently regular, and thus, the numerical solution can be obtained with improved accuracy by using NURBS of order higher than that required for the geometry, (2) the constraint of using the same space for the geometry and the numerical solution is particularly undesirable, such as in the shape and topology optimization, and (3) the solution of the problem has low regularity but for the curved boundary of the domain one can employ higher order NURBS. Therefore, we propose to weaken this constraint. An extensive study of patch tests on various combinations of polynomial degree, geometry type, and various cases of varying degrees and control variables between the geometry and the numerical solution will be discussed. It will be shown, with concrete reasoning, that why patch test fails in certain cases, and that those cases should be avoided in practice. Thereafter, selective numerical examples will be presented to address some of the above-mentioned situations, and it will be shown that weakening the tight coupling between geometry and simulation offers more flexibility in choosing the numerical solution spaces, and thus, improved accuracy of the numerical solution. Powered by [less ▲] Detailed reference viewed: 154 (5 UL)Generalizing the isogeometric concept: weakening the tight coupling between geometry and simulation in IGA Tomar, Satyendra ; ; et al Presentation (2016, June 02) In the standard paradigm of isogeometric analysis [2, 1], the geometry and the simulation spaces are tightly integrated, i.e. the non-uniform rational B-splines (NURBS) space, which is used for the ... [more ▼] In the standard paradigm of isogeometric analysis [2, 1], the geometry and the simulation spaces are tightly integrated, i.e. the non-uniform rational B-splines (NURBS) space, which is used for the geometry representation of the domain, is also employed for the numerical solution of the problem over the domain. However, in certain situations, such as, when the geometry of the domain can be represented by low order NURBS but the numerical solution can be obtained with improved accuracy by using NURBS of order higher than that required for the geometry; or in the shape and topology optimization where the constraint of using the same space for the geometry and the numerical solution is not favorable, this tight coupling is disadvantageous. Therefore, we study the effect of decoupling the spaces for the geometry representation and the numerical solution, though still using the prevalent functions in CAD/CAGD. To begin with, we perform the patch tests on various combinations of polynomial degree, geometry type, and various cases of varying degrees and control variables between the geometry and the numerical solution. This shows that certain cases, perhaps intuitive, should be avoided in practice because patch test fails. The above-mentioned situations are further explored with some numerical examples, which shows that weakening the tight coupling between geometry and simulation offers more flexibility in choosing the numerical solution spaces. [1] J. Cottrell, T.J.R. Hughes, and Y. Bazilevs. Isogeometric Analysis: Toward Integration of CAD and FEA, volume 80. Wiley, Chichester, 2009. [2] T.J.R. Hughes, J. Cottrell, and Y. Bazilevs. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering, 194:4135–4195, 2005. [less ▲] Detailed reference viewed: 185 (11 UL)Isogeometric boundary element methods for three dimensional static fracture and fatigue crack growth ; ; et al in Computer Methods in Applied Mechanics and Engineering (2016) Detailed reference viewed: 243 (13 UL)Efficient propagation of uncertainty through an inverse non-linear deformation model of soft tissue Hauseux, Paul ; Hale, Jack ; Bordas, Stéphane Scientific Conference (2016, June) Detailed reference viewed: 188 (24 UL)Well Conditioned and Optimally Convergent Extended Finite Elements and Vector Level Sets for Three-Dimensional Crack Propagation Agathos, Konstantinos ; ; et al Scientific Conference (2016, June) A three-dimensional (3D) version of the vector level set method [1] is combined to a well conditioned and optimally convergent XFEM variant in order to deal with non-planar three dimensional crack ... [more ▼] A three-dimensional (3D) version of the vector level set method [1] is combined to a well conditioned and optimally convergent XFEM variant in order to deal with non-planar three dimensional crack propagation problems. The proposed computational fracture method achieves optimal convergence rates by using tip enriched elements in a fixed volume around the crack front (geometrical enrichment) while keeping conditioning of the resulting system matrices in acceptable levels. Conditioning is controlled by using a three dimensional extension of the degree of freedom gathering technique [2]. Moreover, blending errors are minimized and conditioning is further improved by employing weight function blending and enrichment function shifting [3,4]. As far as crack representation is concerned, crack surfaces are represented by linear quadrilateral elements and the corresponding crack fronts by ordered series of linear segments. Level set values are obtained by projecting points at the crack surface and front respectively. Different criteria are employed in order to assess the quality of the crack representation. References [1] Ventura G., Budyn E. and Belytschko T. Vector level sets for description of propagating cracks in finite elements. Int. J. Numer. Meth. Engng. 58:1571-1592 (2003). [2] Laborde P., Pommier J., Renard Y. and Salaün M. High-order extended finite element method for cracked domains. Int. J. Numer. Meth. Engng. 64:354-381 (2005). [3] Fries T.P. A corrected XFEM approximation without problems in blending elements. Int. J. Numer. Meth. Engng. 75:503-532 (2008). [4] Ventura G., Gracie R. and Belytschko T. Fast integration and weight function blending in the extended finite element method. Int. J. Numer. Meth. Engng. 77:1-29 (2009). [less ▲] Detailed reference viewed: 183 (15 UL)A Bayesian approach for parameter identification in elastoplasticity Rappel, Hussein ; Beex, Lars ; Hale, Jack et al Scientific Conference (2016, June) Detailed reference viewed: 188 (28 UL)Virtual-power-based quasicontinuum methods for discrete dissipative materials Beex, Lars ; Bordas, Stéphane Scientific Conference (2016, June) Detailed reference viewed: 88 (2 UL)Linear smoothing over arbitrary polytopes for compressible and nearly incompressible linear elasticity ; Tomar, Satyendra ; Bordas, Stéphane et al Scientific Conference (2016, June) We present a displacement based approach over arbitrary polytopes for compressible and nearly incompressible linear elastic solids. In this approach, a volume-averaged nodal projection operator is ... [more ▼] We present a displacement based approach over arbitrary polytopes for compressible and nearly incompressible linear elastic solids. In this approach, a volume-averaged nodal projection operator is constructed to project the dilatational strain into an approximation space of equal or lower-order than the approximation space for the displacement field, resulting in a locking-free method. The formulation uses the usual Wachspress interpolants over arbitrary polytopes and the stability of the method is ensured by the addition of bubble like functions. The smoothed strains are evaluated based on the linear smoothing procedure. This further softens the bilinear form allowing the procedure to search for a solution satisfying the divergence- free condition. The divergence-free condition of the proposed approach is verified through systematic numerical study. The formulation delivers optimal convergence rates in the energy and L2-norms. Inf-sup tests are presented to demonstrated the stability of the formulation. [less ▲] Detailed reference viewed: 240 (3 UL)Numerical study of magnetic particles concentration in biofluid (blood) under the influence of high gradient magnetic field in microchannel ; Bourantas, Georgios ; et al Scientific Conference (2016, June) A meshless numerical scheme [1] is developed in order to simulate the magnetically mediated separation of biological mixture used in lab-on-chip devices as solid carriers for capturing, transporting and ... [more ▼] A meshless numerical scheme [1] is developed in order to simulate the magnetically mediated separation of biological mixture used in lab-on-chip devices as solid carriers for capturing, transporting and detecting biological magnetic labeled entities [2], as well as for drug delivering, magnetic hyperthermia treatment, magnetic resonance imaging, magnetofection, etc. A modified one-way particle-fluid coupling analysis is considered to model the interaction of the base fluid of the mixture with the distributed particles motion. In details, bulk flow influences particle motion (through a simplified Stokes drag relation), while it is strongly dependent on particle motion through (particle) concentration. Due to the imposed magnetic field stagnation regions are developed, leading to the accumulation of the magnetic labeled species and finally to their collection from the heterogeneous mixture. The role of (i) the intensity of magnetic field and its gradient, (ii) the position of magnetic field, (iii) the magnetic susceptibility of magnetic particles, (iv) the volume concentration of magnetic particles (nanoparticles) and their size, (v) the flow velocity in the magnetic- fluidic interactions and interplay between the magnetophoretic mass transfer and molecular diffusion are thoroughly investigated. Both Newtonian and non-Newtonian blood flow models are considered, along with different expressions for the concentration and numerical results are presented for a wide range of physical parameters (Hartmann number (Ha), Reynolds number (Re)). A comprehensive study investigates their impact on the biomagnetic separation. For verification purposes, the numerical results obtained by the proposed meshless scheme were compared with established numerical results from the literature, being in excellent agreement. [less ▲] Detailed reference viewed: 387 (11 UL)Generalizing the isogeometric concept: weakening the tight coupling between geometry and simulation in IGA Bordas, Stéphane ; Tomar, Satyendra ; et al Scientific Conference (2016, May 30) In the standard paradigm of isogeometric analysis [2, 1], the geometry and the simulation spaces are tightly integrated, i.e. the non-uniform rational B-splines (NURBS) space, which is used for the ... [more ▼] In the standard paradigm of isogeometric analysis [2, 1], the geometry and the simulation spaces are tightly integrated, i.e. the non-uniform rational B-splines (NURBS) space, which is used for the geometry representation of the domain, is also employed for the numerical solution of the problem over the domain. However, in certain situations, such as, when the geometry of the domain can be represented by low order NURBS but the numerical solution can be obtained with improved accuracy by using NURBS of order higher than that required for the geometry; or in the shape and topology optimization where the constraint of using the same space for the geometry and the numerical solution is not favorable, this tight coupling is disadvantageous. Therefore, we study the effect of decoupling the spaces for the geometry representation and the numerical solution, though still using the prevalent functions in CAD/CAGD. To begin with, we perform the patch tests on various combinations of polynomial degree, geometry type, and various cases of varying degrees and control variables between the geometry and the numerical solution. This shows that certain cases, perhaps intuitive, should be avoided in practice because patch test fails. The above-mentioned situations are further explored with some numerical examples, which shows that weakening the tight coupling between geometry and simulation offers more flexibility in choosing the numerical solution spaces. [less ▲] Detailed reference viewed: 153 (3 UL)Computational mechanics of interfaces Bordas, Stéphane Presentation (2016, May 22) The course will present an overview of recent developments, which will enable students to make informed choices in terms of discretization and model selection in solving numerical problems in mechanics ... [more ▼] The course will present an overview of recent developments, which will enable students to make informed choices in terms of discretization and model selection in solving numerical problems in mechanics. We will cover discretization strategies ranging from the standard finite element method, the smoothed finite element method, the extended finite element method, polygonal and virtual element methods, meshfree methods. The applications range between fracture of heterogeneous materials and biomedical simulations. The intended learning outcomes of the course are such that the students will be: - able to critically assess discretization schemes in mechanics - able to implement simple error estimators for finite element methods - familiar with basic multi-scale methods for fracture and their limitations - able to follow basic literature in model error and model selection, in particular based on Bayesian inference Course participants will learn these topics through lectures and hands-on numerical experiments. [less ▲] Detailed reference viewed: 414 (16 UL)Propagating uncertainty using FE advanced Monte-Carlo methods: application to non- linear hyperelastic models Hauseux, Paul ; Hale, Jack ; Bordas, Stéphane Presentation (2016, May 09) Detailed reference viewed: 163 (12 UL)Bayesian inference for material parameter identification Rappel, Hussein ; Beex, Lars ; Hale, Jack et al Report (2016) Detailed reference viewed: 159 (14 UL)Large-deformation lattice model for dry-woven fabrics including contact Magliulo, Marco ; Beex, Lars ; Zilian, Andreas et al Speeches/Talks (2016) Short Presentation on the Quasi-continuum method Detailed reference viewed: 327 (33 UL)Reduced order method for patient specific application: biomechanics of brain in presence of tumor Baroli, Davide ; Beex, Lars ; Bordas, Stéphane Speeches/Talks (2016) Detailed reference viewed: 174 (13 UL)3D Crack Detection Using an XFEM Variant and Global Optimization Algorithms Agathos, Konstantinos ; ; Bordas, Stéphane Scientific Conference (2016, May) Detailed reference viewed: 242 (20 UL)Propagating uncertainty through a non-linear hyperelastic model using advanced Monte-Carlo methods Hauseux, Paul ; Hale, Jack ; Bordas, Stéphane Scientific Conference (2016, May) Detailed reference viewed: 241 (20 UL)3D fatigue fracture modeling by isogeometric boundary element methods ; ; et al Scientific Conference (2016, April 01) Detailed reference viewed: 165 (1 UL)Error estimation and space-time adaptivity for the isogeometric analysis of transient structural dynamics ; ; Bordas, Stéphane et al Scientific Conference (2016, April 01) This paper presents a new adaptive scheme for the error-controlled simulation of transient dynamics problem. We rely on spline bases for the higher-order spatial description of our kinematic fields. Local ... [more ▼] This paper presents a new adaptive scheme for the error-controlled simulation of transient dynamics problem. We rely on spline bases for the higher-order spatial description of our kinematic fields. Local adaptivity is performed by employing a hierarchical T-mesh technology, in combination with geometry independent field approximation. The Newmark algorithm is chosen to solve the semidiscrete equation of motion. We will present some simple local error estimates to drive the adaptivity, and show how we can ensure that the mechanical energy of conservative systems is preserved during the refinement process. [less ▲] Detailed reference viewed: 136 (4 UL)Automatised selection of load paths to construct reduced-order models in computational damage micromechanics: from dissipation-driven random selection to Bayesian optimization ; ; Bordas, Stéphane et al in Computational Mechanics (2016) In this paper, we present new reliable model order reduction strategies for computational micromechanics. The difficulties rely mainly upon the high dimensionality of the parameter space represented by ... [more ▼] In this paper, we present new reliable model order reduction strategies for computational micromechanics. The difficulties rely mainly upon the high dimensionality of the parameter space represented by any load path applied onto the representative volume element. We take special care of the challenge of selecting an exhaustive snapshot set. This is treated by first using a random sampling of energy dissipating load paths and then in a more advanced way using Bayesian optimization associated with an interlocked division of the parameter space. Results show that we can insure the selection of an exhaustive snapshot set from which a reliable reduced-order model can be built. [less ▲] Detailed reference viewed: 408 (32 UL) |
||