References of "Vetter, Guillaume"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailThe actin filament cross-linker L-plastin confers resistance to TNF-alpha in MCF-7 breast cancer cells in a phosphorylation-dependent manner.
Janji, Bassam; Vallar, Laurent; Al Tanoury, Ziad et al

in Journal of Cellular and Molecular Medicine (2010), 14(6A), 1264-75

We used a tumour necrosis factor (TNF)-alpha resistant breast adenocarcinoma MCF-7 cell line to investigate the involvement of the actin cytoskeleton in the mechanism of cell resistance to this cytokine ... [more ▼]

We used a tumour necrosis factor (TNF)-alpha resistant breast adenocarcinoma MCF-7 cell line to investigate the involvement of the actin cytoskeleton in the mechanism of cell resistance to this cytokine. We found that TNF resistance correlates with the loss of cell epithelial properties and the gain of a mesenchymal phenotype, reminiscent of an epithelial-to-mesenchymal transition (EMT). Morphological changes were associated with a profound reorganization of the actin cytoskeleton and with a change in the repertoire of expressed actin cytoskeleton genes and EMT markers, as revealed by DNA microarray-based expression profiling. L-plastin, an F-actin cross-linking and stabilizing protein, was identified as one of the most significantly up-regulated genes in TNF-resistant cells. Knockdown of L-plastin in these cells revealed its crucial role in conferring TNF resistance. Importantly, overexpression of wild-type L-plastin in TNF-sensitive MCF-7 cells was sufficient to protect them against TNF-mediated cell death. Furthermore, we found that this effect is dependent on serine-5 phosphorylation of L-plastin and that non-conventional protein kinase C isoforms and the ceramide pathway may regulate its phosphorylation state. The protective role of L-plastin was not restricted to TNF-alpha resistant MCF-7 cells because a correlation between the expression of L-plastin and the resistance to TNF-alpha was observed in other breast cancer cell lines. Together, our study discloses a novel unexpected role of the actin bundling protein L-plastin as a cell protective protein against TNF-cytotoxicity. [less ▲]

Detailed reference viewed: 106 (11 UL)
Full Text
Peer Reviewed
See detailTranscriptional repression of microRNA genes by PML-RARA increases expression of key cancer proteins in acute promyelocytic leukemia.
Saumet, Anne; Vetter, Guillaume; Bouttier, Manuella et al

in Blood (2009), 113(2), 412-21

Micro(mi)RNAs are small noncoding RNAs that orchestrate many key aspects of cell physiology and their deregulation is often linked to distinct diseases including cancer. Here, we studied the contribution ... [more ▼]

Micro(mi)RNAs are small noncoding RNAs that orchestrate many key aspects of cell physiology and their deregulation is often linked to distinct diseases including cancer. Here, we studied the contribution of miRNAs in a well-characterized human myeloid leukemia, acute promyelocytic leukemia (APL), targeted by retinoic acid and trioxide arsenic therapy. We identified several miRNAs transcriptionally repressed by the APL-associated PML-RAR oncogene which are released after treatment with all-trans retinoic acid. These coregulated miRNAs were found to control, in a coordinated manner, crucial pathways linked to leukemogenesis, such as HOX proteins and cell adhesion molecules whose expressions are thereby repressed by the chemotherapy. Thus, APL appears linked to transcriptional perturbation of miRNA genes, and clinical protocols able to successfully eradicate cancer cells may do so by restoring miRNA expression. The identification of abnormal miRNA biogenesis in cancer may therefore provide novel biomarkers and therapeutic targets in myeloid leukemias. [less ▲]

Detailed reference viewed: 121 (0 UL)
Peer Reviewed
See detailMolecular basis for dissimilar nuclear trafficking of the actin-bundling protein isoforms T- and L-plastin.
Delanote, Veerle; Van Impe, Katrien; De Corte, Veerle et al

in Traffic (Copenhagen, Denmark) (2005), 6(4), 335-45

T- and L-plastin are highly similar actin-bundling proteins implicated in the regulation of cell morphology, lamellipodium protrusion, bacterial invasion and tumor progression. We show that T-plastin ... [more ▼]

T- and L-plastin are highly similar actin-bundling proteins implicated in the regulation of cell morphology, lamellipodium protrusion, bacterial invasion and tumor progression. We show that T-plastin localizes predominantly to the cytoplasm, whereas L-plastin distributes between nucleus and cytoplasm in HeLa or Cos cells. T-plastin shows nuclear accumulation upon incubation of cells with the CRM1 antagonist leptomycin B (LMB). We identified a Rev-like nuclear export sequence (NES) in T-plastin that is able to export an otherwise nuclear protein in an LMB-dependent manner. Deletion of the NES promotes nuclear accumulation of T-plastin. Mutation of residues L17, F21 or L26 in the T-plastin NES inhibits nuclear efflux. L-plastin harbors a less conserved NES and lacks the F21 T-plastin residue. Insertion of a Phe residue in the L-plastin NES specifically enhances its export activity. These findings explain why both isoforms exhibit specific distribution patterns in eukaryotic cells. [less ▲]

Detailed reference viewed: 142 (0 UL)