References of "Vaikuntanathan, Suriyanarayanan"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailThermodynamic Control of Activity Patterns in Cytoskeletal Networks
Lamtyugina, Alexandra; Qiu, Yuqing; Fodor, Etienne UL et al

in Physical Review Letters (2022)

Biological materials, such as the actin cytoskeleton, exhibit remarkable structural adaptability to various external stimuli by consuming different amounts of energy. In this Letter, we use methods from ... [more ▼]

Biological materials, such as the actin cytoskeleton, exhibit remarkable structural adaptability to various external stimuli by consuming different amounts of energy. In this Letter, we use methods from large deviation theory to identify a thermodynamic control principle for structural transitions in a model cytoskeletal network. Specifically, we demonstrate that biasing the dynamics with respect to the work done by nonequilibrium components effectively renormalizes the interaction strength between such components, which can eventually result in a morphological transition. Our work demonstrates how a thermodynamic quantity can be used to renormalize effective interactions, which in turn can tune structure in a predictable manner, suggesting a thermodynamic principle for the control of cytoskeletal structure and dynamics. [less ▲]

Detailed reference viewed: 25 (2 UL)
Full Text
Peer Reviewed
See detailDissipation controls transport and phase transitions in active fluids: mobility, diffusion and biased ensembles
Fodor, Etienne UL; Nemoto, Takahiro; Vaikuntanathan, Suriyanarayanan

in NEW JOURNAL OF PHYSICS (2020), 22(1),

Active fluids operate by constantly dissipating energy at the particle level to perform a directed motion, yielding dynamics and phases without any equilibrium equivalent. The emerging behaviors have been ... [more ▼]

Active fluids operate by constantly dissipating energy at the particle level to perform a directed motion, yielding dynamics and phases without any equilibrium equivalent. The emerging behaviors have been studied extensively, yet deciphering how local energy fluxes control the collective phenomena is still largely an open challenge. We provide generic relations between the activity-induced dissipation and the transport properties of an internal tracer. By exploiting a mapping between active fluctuations and disordered driving, our results reveal how the local dissipation, at the basis of self-propulsion, constrains internal transport by reducing the mobility and the diffusion of particles. Then, we employ techniques of large deviations to investigate how interactions are affected when varying dissipation. This leads us to shed light on a microscopic mechanism to promote clustering at low dissipation, and we also show the existence of collective motion at high dissipation. Overall, these results illustrate how tuning dissipation provides an alternative route to phase transitions in active fluids. [less ▲]

Detailed reference viewed: 101 (1 UL)