References of "Topol, Eric J."
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailGenome sequencing analysis identifies new loci associated with Lewy body dementia and provides insights into its genetic architecture
Chia, Ruth; Sabir, Marya S.; Bandres-Ciga, Sara et al

in Nature Genetics (2021)

The genetic basis of Lewy body dementia (LBD) is not well understood. Here, we performed whole-genome sequencing in large cohorts of LBD cases and neurologically healthy controls to study the genetic ... [more ▼]

The genetic basis of Lewy body dementia (LBD) is not well understood. Here, we performed whole-genome sequencing in large cohorts of LBD cases and neurologically healthy controls to study the genetic architecture of this understudied form of dementia, and to generate a resource for the scientific community. Genome-wide association analysis identified five independent risk loci, whereas genome-wide gene-aggregation tests implicated mutations in the gene GBA. Genetic risk scores demonstrate that LBD shares risk profiles and pathways with Alzheimer’s disease and Parkinson’s disease, providing a deeper molecular understanding of the complex genetic architecture of this age-related neurodegenerative condition. [less ▲]

Detailed reference viewed: 95 (3 UL)
Peer Reviewed
See detailPrediction of Causal Candidate Genes in Coronary Artery Disease Loci.
Brænne, Ingrid; Civelek, Mete; Vilne, Baiba et al

in Arteriosclerosis, thrombosis, and vascular biology (2015), 35(10), 2207-17

OBJECTIVE: Genome-wide association studies have to date identified 159 significant and suggestive loci for coronary artery disease (CAD). We now report comprehensive bioinformatics analyses of sequence ... [more ▼]

OBJECTIVE: Genome-wide association studies have to date identified 159 significant and suggestive loci for coronary artery disease (CAD). We now report comprehensive bioinformatics analyses of sequence variation in these loci to predict candidate causal genes. APPROACH AND RESULTS: All annotated genes in the loci were evaluated with respect to protein-coding single-nucleotide polymorphism and gene expression parameters. The latter included expression quantitative trait loci, tissue specificity, and miRNA binding. High priority candidate genes were further identified based on literature searches and our experimental data. We conclude that the great majority of causal variations affecting CAD risk occur in noncoding regions, with 41% affecting gene expression robustly versus 6% leading to amino acid changes. Many of these genes differed from the traditionally annotated genes, which was usually based on proximity to the lead single-nucleotide polymorphism. Indeed, we obtained evidence that genetic variants at CAD loci affect 98 genes which had not been linked to CAD previously. CONCLUSIONS: Our results substantially revise the list of likely candidates for CAD and suggest that genome-wide association studies efforts in other diseases may benefit from similar bioinformatics analyses. [less ▲]

Detailed reference viewed: 12 (0 UL)