References of "Shin, Oh-Soon"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailUAV-Assisted Secure Communications in Terrestrial Cognitive Radio Networks: Joint Power Control and 3D Trajectory Optimization
Nguyen, X. Nguyen; Nguyen, van Dinh UL; Nguyen, Van Hieu et al

in IEEE Transactions on Vehicular Communications (2021), 70(4), 3298-3313

This paper considers secure communications for an underlay cognitive radio network (CRN) in the presence of an external eavesdropper (Eve). The secrecy performance of CRNs is usually limited by the ... [more ▼]

This paper considers secure communications for an underlay cognitive radio network (CRN) in the presence of an external eavesdropper (Eve). The secrecy performance of CRNs is usually limited by the primary receiver’s interference power constraint. To overcome this issue, we propose to use an unmanned aerial vehicle (UAV) as a friendly jammer to interfere Eve in decoding the confidential message from the secondary transmitter (ST). Our goal is to jointly optimize the transmit power and UAV’s trajectory in the three-dimensional (3D) space to maximize the average achievable secrecy rate of the secondary system. The formulated optimization problem is nonconvex due to the nonconvexity of the objective and nonconvexity of constraints, which is very challenging to solve. To obtain a suboptimal but efficient solution to the problem, we first transform the original problem into a more tractable form and develop an iterative algorithm for its solution by leveraging the inner approximation framework. We further extend the proposed algorithm to the case of imperfect location information of Eve, where the average worst-case secrecy rate is considered as the objective function. Extensive numerical results are provided to demonstrate the merits of the proposed algorithms over existing approaches. [less ▲]

Detailed reference viewed: 57 (5 UL)
Full Text
Peer Reviewed
See detailOn the Spectral and Energy Efficiencies of Full-Duplex Cell-Free Massive MIMO
Nguyen, Hieu V.; Nguyen, van Dinh UL; Dobre, Octavia A. et al

in IEEE Journal on Selected Areas in Communications (2020), 38(8), 1698-1718

In-band full-duplex (FD) operation is practically more suited for short-range communications such as WiFi and small-cell networks, due to its current practical limitations on the self-interference ... [more ▼]

In-band full-duplex (FD) operation is practically more suited for short-range communications such as WiFi and small-cell networks, due to its current practical limitations on the self-interference cancellation. In addition, cell-free massivemultiple-input multiple-output (CF-mMIMO) is a new and scalable version of MIMO networks, which is designed to bring service antennas closer to end user equipments (UEs). To achieve higher spectral and energy efficiencies (SE-EE) of a wireless network, it is of practical interest to incorporate FD capability into CF-mMIMO systems to utilize their combined benefits. We formulate a novel and comprehensive optimization problem for the maximization of SE and EE in which power control, access point-UE (AP-UE) association and AP selection are jointly optimized under a realistic power consumption model, resulting in a difficult class of mixed-integer nonconvex programming. To tackle the binary nature of the formulated problem, we propose an efficient approach by exploiting a strong coupling between binary and continuous variables, leading to a more tractable problem. In this regard, two low-complexity transmission designs based on zero-forcing (ZF) are proposed. Combining tools from inner approximation framework and Dinkelbach method, we develop simple iterative algorithms with polynomial computational complexity in each iteration and strong theoretical performance guaranteed. Furthermore, towards a robust design for FD CFmMIMO, a novel heap-based pilot assignment algorithm is proposed to mitigate effects of pilot contamination. Numerical results show that our proposed designs with realistic parameters significantly outperform the well-known approaches (i.e., smallcell and collocated mMIMO) in terms of the SE and EE. Notably, the proposed ZF designs require much less execution time than the simple maximum ratio transmission/combining. [less ▲]

Detailed reference viewed: 164 (35 UL)
Full Text
Peer Reviewed
See detailA Novel Heap-based Pilot Assignment for Full Duplex Cell-Free Massive MIMO with Zero-Forcing
Nguyen, Van Hieu; Nguyen, van Dinh UL; Dobre, Octavia A. et al

in IEEE International Conference on Communications (2020, June 07)

This paper investigates the combined benefits of full-duplex (FD) and cell-free massive multiple-input multipleoutput (CF-mMIMO), where a large number of distributed access points (APs) having FD ... [more ▼]

This paper investigates the combined benefits of full-duplex (FD) and cell-free massive multiple-input multipleoutput (CF-mMIMO), where a large number of distributed access points (APs) having FD capability simultaneously serve numerous uplink and downlink user equipments (UEs) on the same time-frequency resources. To enable the incorporation of FD technology in CF-mMIMO systems, we propose a novel heapbased pilot assignment algorithm, which not only can mitigate the effects of pilot contamination but also reduce the involved computational complexity. Then, we formulate a robust design problem for spectral efficiency (SE) maximization in which the power control and AP-UE association are jointly optimized, resulting in a difficult mixed-integer nonconvex programming. To solve this problem, we derive a more tractable problem before developing a very simple iterative algorithm based on inner approximation method with polynomial computational complexity. Numerical results show that our proposed methods with realistic parameters significantly outperform the existing approaches in terms of the quality of channel estimate and SE. [less ▲]

Detailed reference viewed: 131 (31 UL)