References of "Sharma, Anshul 50020741"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailFacile Anisotropic Deswelling Method for Realizing Large‐Area Cholesteric Liquid Crystal Elastomers with Uniform Structural Color and Broad‐Range Mechanochromic Response
Kizhakidathazhath, Rijeesh UL; Geng, Yong UL; Jampani, Venkata UL et al

in Advanced Functional Materials (2019)

Cholesteric liquid crystal elastomers (CLCEs) are soft and dynamic photonic elements that couple the circularly polarized structural color from the cho- lesteric helix to the viscoelasticity of rubbers ... [more ▼]

Cholesteric liquid crystal elastomers (CLCEs) are soft and dynamic photonic elements that couple the circularly polarized structural color from the cho- lesteric helix to the viscoelasticity of rubbers: the reflection color is mechani- cally tunable (mechanochromic response) over a broad range. This requires uniform helix orientation, previously realized by long-term centrifugation to ensure anisotropic deswelling, or using sacrificial substrates or external fields. The present paper presents a simple, reproducible, and scalable method to fab- ricate highly elastic, large-area, millimeters thick CLCE sheets with intense uni- form reflection color that is repeatably, rapidly, and continuously tunable across the full visible spectrum by stretching or compressing. A precursor solution is poured onto a substrate and allowed to polymerize into a 3D network during solvent evaporation. Pinning to the substrate prevents in-plane shrinkage, thereby realizing anisotropic deswelling in an unprecedentedly simple manner. Quantitative stress–strain–reflection wavelength characterization reveals behavior in line with theoretical predictions: two linear regimes are identified for strains below and above the helix unwinding threshold, respectively. Up to a doubling of the sample length, the continuous color variation across the full visible spectrum repeatedly follows a volume conserving function of the strain, allowing the CLCE to be used as optical high-resolution strain sensor. [less ▲]

Detailed reference viewed: 148 (38 UL)
Full Text
Peer Reviewed
See detailElectrospun Composite Liquid Crystal Elastomer Fibers
Sharma, Anshul UL; Lagerwall, Jan UL

in Materials (2018), 11(3), 393

We present a robust method to prepare thin oriented nematic liquid crystalline elastomer-polymer (LCE-polymer) core-sheath fibers. An electrospinning setup is utilized to spin a single solution of photo ... [more ▼]

We present a robust method to prepare thin oriented nematic liquid crystalline elastomer-polymer (LCE-polymer) core-sheath fibers. An electrospinning setup is utilized to spin a single solution of photo-crosslinkable low molecular weight reactive mesogens and a support polymer to form the coaxial LCE-polymer fibers, where the support polymer forms the sheath via in situ phase separation as the solvent evaporates. We discuss the effect of phase separation and compare two different sheath polymers (polyvinylpyrrolidone and polylactic acid), investigating optical and morphological properties of obtained fibers, as well as the shape changes upon heating. The current fibers show only irreversible contraction, the relaxation most likely being hindered by the presence of the passive sheath polymer, increasing in stiffness on cooling. If the sheath polymer can be removed while keeping the LCE core intact, we expect LCE fibers produced in this way to have potential to be used as actuators, for instance in soft robotics and responsive textiles. [less ▲]

Detailed reference viewed: 159 (5 UL)
Full Text
Peer Reviewed
See detailLiquid crystals in micron-scale droplets, shells and fibers
Urbanski, Martin UL; Reyes, Catherine UL; Noh, Junghyun UL et al

in Journal of Physics : Condensed Matter (2017), 29

The extraordinary responsiveness and large diversity of self-assembled structures of liquid crystals are well documented and they have been extensively used in devices like displays. For long, this ... [more ▼]

The extraordinary responsiveness and large diversity of self-assembled structures of liquid crystals are well documented and they have been extensively used in devices like displays. For long, this application route strongly influenced academic research, which frequently focused on the performance of liquid crystals in display-like geometries, typically between flat, rigid substrates of glass or similar solids. Today a new trend is clearly visible, where liquid crystals confined within curved, often soft and flexible, interfaces are in focus. Innovation in microfluidic technology has opened for high-throughput production of liquid crystal droplets or shells with exquisite monodispersity, and modern characterization methods allow detailed analysis of complex director arrangements. The introduction of electrospinning in liquid crystal research has enabled encapsulation in optically transparent polymeric cylinders with very small radius, allowing studies of confinement effects that were not easily accessible before. It also opened the prospect of functionalizing textile fibers with liquid crystals in the core, triggering activities that target wearable devices with true textile form factor for seamless integration in clothing. Together, these developments have brought issues center stage that might previously have been considered esoteric, like the interaction of topological defects on spherical surfaces, saddle-splay curvature-induced spontaneous chiral symmetry breaking, or the non-trivial shape changes of curved liquid crystal elastomers with non-uniform director fields that undergo a phase transition to an isotropic state. The new research thrusts are motivated equally by the intriguing soft matter physics showcased by liquid crystals in these unconventional geometries, and by the many novel application opportunities that arise when we can reproducibly manufacture these systems on a commercial scale. This review attempts to summarize the current understanding of liquid crystals in spherical and cylindrical geometry, the state of the art of producing such samples, as well as the perspectives for innovative applications that have been put forward. [less ▲]

Detailed reference viewed: 440 (7 UL)
Full Text
Peer Reviewed
See detailNon-electronic gas sensors from electrospun mats of liquid crystal core fibers for detecting volatile organic compounds at room temperature
Reyes, Catherine UL; Sharma, Anshul UL; Lagerwall, Jan UL

in Liquid Crystals (2016)

Non-woven mats comprised of liquid crystal-functionalised fibres are coaxially electrospun to create soft gas sensors that function non-electronically, thus requiring no power supply, detect- ing organic ... [more ▼]

Non-woven mats comprised of liquid crystal-functionalised fibres are coaxially electrospun to create soft gas sensors that function non-electronically, thus requiring no power supply, detect- ing organic vapours at room temperature. The fibres consist of a poly(vinylpyrrolidone) (PVP) sheath surrounding a core of nematic 4-cyano-4ʹpentylbiphenyl (5CB) liquid crystal. Several types of mats, containing uniformly cylindrical or irregular beaded fibres, in uniform or random orientations, are exposed to toluene vapour as a representative volatile organic compound. Between crossed polarisers all mats respond with a fast (response time on the order of a second or faster) reduction in brightness during gas exposure, and they return to the original state upon removal of the gas almost as quickly. With beaded fibres, the response of the mats is visible even without polarisers. We discuss how variations in fibre spinning conditions such as humidity level and the ratio of core-sheath fluid flow rates can be used to tune fibre morphology and thereby the response. Considering future development perspectives, we argue that fibres turned respon- sive through the incorporation of a liquid crystal core show promise as a new generation of sensors with textile form factor, ideal for wearable technology applications. [less ▲]

Detailed reference viewed: 224 (25 UL)