![]() Jayasinghe, Laddu Bhagya ![]() in Computers and Geotechnics (2019), 116 This paper presents a 3D coupled Smoothed Particle Hydrodynamics (SPH) and Finite Element Method (FEM) model, which was developed to investigate the extent of damage zone and fracture patterns in rock due ... [more ▼] This paper presents a 3D coupled Smoothed Particle Hydrodynamics (SPH) and Finite Element Method (FEM) model, which was developed to investigate the extent of damage zone and fracture patterns in rock due to blasting. The RHT material model was used to simulate the blasting-induced damage in rock. The effects of discontinuity persistence and high in-situ stresses on the evolution of blasting-induced damage were investigated. Results of this study indicate that discontinuity persistence and spatial distribution of rock bridges have a significant influence on the evolution of blasting-induced damage. Furthermore, high in-situ stresses also have a significant influence on the propagation of blasting-induced fractures, as well as the patterns of fracture networks. It is also shown that the blasting-induced cracks are often induced along the direction of the applied high initial stresses. Moreover, additional cracks are normally generated at the edges of the rock bridges probably due to the relatively high stress concentration. � 2019 Elsevier Ltd [less ▲] Detailed reference viewed: 103 (10 UL)![]() ; Jayasinghe, Laddu Bhagya ![]() in Theoretical and Applied Fracture Mechanics (2019), 104 A complete understanding of the fracture behaviour of anisotropic rocks under elevated temperatures is fundamentally important for rock and reservoir engineering applications. This paper shows a three ... [more ▼] A complete understanding of the fracture behaviour of anisotropic rocks under elevated temperatures is fundamentally important for rock and reservoir engineering applications. This paper shows a three-dimensional numerical investigation of the fracture behaviour of anisotropic sandstone, with consideration of the effects of temperature and material anisotropy. In the study, a 3D semi-circular bend (SCB) model was established by using the Discrete Element Method (DEM). The thermal responses of different minerals and the strength anisotropy of incipient bedding planes were considered in the model. The DEM model was calibrated against a series of laboratory experiments on Midgley Grit sandstone (MGS) that exhibits intrinsic anisotropy. The pure mode I, mode II, and mixed-mode (I+II) fracture characteristics of the MGS were investigated under elevated temperatures (up to 600 �C) using the established DEM model. The thermal degradation (i.e., fracturing) of the rock, the fracture load, the evolution of micro-cracks, and the stress-strain relationship around notch tips were analysed, with emphasis on enlightening the micro-mechanisms underlying the fracture behaviour. The results of the study were discussed and then compared with experimental observations and theoretical predictions. � 2019 Elsevier Ltd [less ▲] Detailed reference viewed: 69 (4 UL) |
||