References of "Schnekenburger, Michael"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailThe HDAC6 inhibitor 7b induces BCR-ABL ubiquitination and downregulation and synergizes with imatinib to trigger apoptosis in chronic myeloid leukemia
Losson, Hélène; Gajulapalli, Sruthi Reddy; Lernoux, Manon et al

in Pharmacological Research (2020), 160

Despite the discovery of tyrosine kinase inhibitors (TKIs) for the treatment of breakpoint cluster region-Abelson (BCR-ABL)+ cancer types, patients with chronic myeloid leukemia (CML) treated with TKIs ... [more ▼]

Despite the discovery of tyrosine kinase inhibitors (TKIs) for the treatment of breakpoint cluster region-Abelson (BCR-ABL)+ cancer types, patients with chronic myeloid leukemia (CML) treated with TKIs develop resistance and severe adverse effects. Combination treatment, especially with a histone deacetylase (HDAC) 6 inhibitor (HDAC6i), appears to be an attractive option to prevent TKI resistance, considering the potential capacity of an HDAC6i to diminish BCR-ABL expression. We first validated the in vivo anti-cancer potential of the compound 7b by significantly reducing the tumor burden of BALB/c mice xenografted with K-562 cells, without notable organ toxicity. Here, we hypothesize that the HDAC6i compound 7b can lead to BCR-ABL downregulation in CML cells and sensitize them to TKI treatment. The results showed that combination treatment with imatinib and 7b resulted in strong synergistic caspase-dependent apoptotic cell death and drastically reduced the proportion of leukemia stem cells, whereas this treatment only moderately affected healthy cells. Ultimately, the combination significantly decreased colony formation in a semisolid methylcellulose medium and tumor mass in xenografted zebrafish compared to each compound alone. Mechanistically, the combination induced BCR-ABL ubiquitination and downregulation followed by disturbance of key proteins in downstream pathways involved in CML proliferation and survival. Taken together, our results suggest that an HDAC6i potentiates the effect of imatinib and could overcome TKI resistance in CML cells. [less ▲]

Detailed reference viewed: 45 (1 UL)
Full Text
Peer Reviewed
See detailNovel HDAC inhibitor MAKV-8 and imatinib synergistically kill chronic myeloid leukemia cells via inhibition of BCR-ABL/MYC-signaling: effect on imatinib resistance and stem cells
Lernoux, Manon; Schnekenburger, Michael; Losson, Hélène et al

in Clinical Epigenetics (2020), 12(1), 69

BACKGROUND: Chronic myeloid leukemia (CML) pathogenesis is mainly driven by the oncogenic breakpoint cluster region-Abelson murine leukemia viral oncogene homolog 1 (BCR-ABL) fusion protein. Since BCR-ABL ... [more ▼]

BACKGROUND: Chronic myeloid leukemia (CML) pathogenesis is mainly driven by the oncogenic breakpoint cluster region-Abelson murine leukemia viral oncogene homolog 1 (BCR-ABL) fusion protein. Since BCR-ABL displays abnormal constitutive tyrosine kinase activity, therapies using tyrosine kinase inhibitors (TKis) such as imatinib represent a major breakthrough for the outcome of CML patients. Nevertheless, the development of TKi resistance and the persistence of leukemia stem cells (LSCs) remain barriers to cure the disease, justifying the development of novel therapeutic approaches. Since the activity of histone deacetylase (HDAC) is deregulated in numerous cancers including CML, pan-HDAC inhibitors may represent promising therapeutic regimens for the treatment of CML cells in combination with TKi. RESULTS: We assessed the anti-leukemic activity of a novel hydroxamate-based pan-HDAC inhibitor MAKV-8, which complied with the Lipinski's "rule of five," in various CML cells alone or in combination with imatinib. We validated the in vitro HDAC-inhibitory potential of MAKV-8 and demonstrated efficient binding to the ligand-binding pocket of HDAC isoenzymes. In cellulo, MAKV-8 significantly induced target protein acetylation, displayed cytostatic and cytotoxic properties, and triggered concomitant ER stress/protective autophagy leading to canonical caspase-dependent apoptosis. Considering the specific upregulation of selected HDACs in LSCs from CML patients, we investigated the differential toxicity of a co-treatment with MAKV-8 and imatinib in CML versus healthy cells. We also showed that beclin-1 knockdown prevented MAKV-8-imatinib combination-induced apoptosis. Moreover, MAKV-8 and imatinib co-treatment synergistically reduced BCR-ABL-related signaling pathways involved in CML cell growth and survival. Since our results showed that LSCs from CML patients overexpressed c-MYC, importantly MAKV-8-imatinib co-treatment reduced c-MYC levels and the LSC population. In vivo, tumor growth of xenografted K-562 cells in zebrafish was completely abrogated upon combined treatment with MAKV-8 and imatinib. CONCLUSIONS: Collectively, the present findings show that combinations HDAC inhibitor-imatinib are likely to overcome drug resistance in CML pathology. [less ▲]

Detailed reference viewed: 44 (0 UL)
Full Text
Peer Reviewed
See detailHuman telomerase reverse transcriptase depletion potentiates the growth- T inhibitory activity of imatinib in chronic myeloid leukemia stem cells
Grandjenettea, Cindy; Schnekenburger, Michael; Gaigneaux, Anthoula UL et al

in Cancer Letters (2020)

Although tyrosine kinase inhibitors (TKIs) revolutionized the management of chronic myeloid leukemia (CML), resistance against TKIs and leukemia stem cell (LSC) persistence remain a clinical concern ... [more ▼]

Although tyrosine kinase inhibitors (TKIs) revolutionized the management of chronic myeloid leukemia (CML), resistance against TKIs and leukemia stem cell (LSC) persistence remain a clinical concern. Therefore, new therapeutic strategies combining conventional and novel therapies are urgently needed. Since telomerase is involved in oncogenesis and tumor progression but is silent in most human normal somatic cells, it may be an interesting target for CML therapy by selectively targeting cancer cells while minimizing effects on normal cells. Here, we report that hTERT expression is associated with CML disease progression. We also provide evidence that hTERT-deficient K-562 cells do not display telomere shortening and that telomere length is maintained through the ALT pathway. Furthermore, we show that hTERT depletion exerts a growth-inhibitory effect in K- 562 cells and potentiates imatinib through alteration of cell cycle progression leading to a senescence-like phenotype. Finally, we demonstrate that hTERT depletion potentiates the imatinib-induced reduction of the ALDH+-LSC population. Altogether, our results suggest that the combination of telomerase and TKI should be considered as an attractive strategy to treat CML patients to eradicate cancer cells and prevent relapse by tar- geting LSCs. [less ▲]

Detailed reference viewed: 43 (4 UL)
Full Text
Peer Reviewed
See detailValproic acid perturbs hematopoietic homeostasis by inhibition of erythroid differentiation and activation of the myelo-monocytic pathway
Chateauvieux, Sebastien; Eifes, Serge UL; Morceau, Franck et al

in Biochemical Pharmacology (2011), 81(4), 498-509

As a histone deacetylase inhibitor, valproic acid (VPA) is a candidate for anticancer therapy. Besides, VPA exhibits various mechanisms of action and its effects on the molecular basis of hematopoiesis ... [more ▼]

As a histone deacetylase inhibitor, valproic acid (VPA) is a candidate for anticancer therapy. Besides, VPA exhibits various mechanisms of action and its effects on the molecular basis of hematopoiesis remain unclear. To study the effects of VPA on the hematopoietic system, we performed microarray analysis using K562 cells treated with 1mM VPA over a 72h time course. The association between gene ontology (GO) terms and the lists of differentially expressed genes was tested using the Bioconductor package GOstats. Enrichment analysis for cellular differentiation pathways was performed based on manually curated gene lists. Results from microarray analysis were confirmed by studying cell differentiation features at the molecular and cellular levels using other hematopoietic cell lines as well as hematopoietic stem/progenitor CD34(+) cells. Microarray analysis revealed 3440 modulated genes in the presence of VPA. Genes involved in the granulo-monocytic differentiation pathway were up-regulated while genes of the erythroid pathway were down-regulated. This was confirmed by analyzing erythrocytic and myeloid membrane markers and lineage-related gene expression in HEL, MEG01, HL60 as well as CD34(+) cells. Moreover, GATA-1 and its co-factors (FOG1, SP1) were down-regulated, while myelopoiesis activator PU.1 was up-regulated, in agreement with an inhibition of erythropoiesis. Our functional profiling and cell phenotyping approach demonstrates that VPA is able to alter hematopoietic homeostasis by modifying the cell population balance in the myeloid compartment. This may lead to a potential failure of erythropoiesis in patients with cancer or chronic inflammatory diseases having a well-described propensity to anemia. [less ▲]

Detailed reference viewed: 113 (0 UL)
Full Text
Peer Reviewed
See detailTumor necrosis factor alpha induces gamma-glutamyltransferase expression via nuclear factor-kappaB in cooperation with Sp1
Reuter, Simone; Schnekenburger, Michael; Cristofanon, Silvia et al

in Biochemical Pharmacology (2009), 77(3), 397-411

Gamma-glutamyltransferase (GGT) cleaves the gamma-glutamyl moiety of glutathione (GSH), an endogenous antioxidant, and is involved in mercapturic acid metabolism and in cancer drug resistance when ... [more ▼]

Gamma-glutamyltransferase (GGT) cleaves the gamma-glutamyl moiety of glutathione (GSH), an endogenous antioxidant, and is involved in mercapturic acid metabolism and in cancer drug resistance when overexpressed. Moreover, GGT converts leukotriene (LT) C4 into LTD4 implicated in various inflammatory pathologies. So far the effect of inflammatory stimuli on regulation of GGT expression and activity remained to be addressed. We found that the proinflammatory cytokine tumor necrosis factor alpha (TNFalpha) induced GGT promoter transactivation, mRNA and protein synthesis, as well as enzymatic activity. Remicade, a clinically used anti-TNFalpha antibody, small interfering RNA (siRNA) against p50 and p65 nuclear factor-kappaB (NF-kappaB) isoforms, curcumin, a well characterized natural NF-kappaB inhibitor, as well as a dominant negative inhibitor of kappaB alpha (IkappaBalpha), prevented GGT activation at various levels, illustrating the involvement of this signaling pathway in TNFalpha-induced stimulation. Over-expression of receptor of TNFalpha-1 (TNFR1), TNFR-associated factor-2 (TRAF2), TNFR-1 associated death domain (TRADD), dominant negative (DN) IkappaBalpha or NF-kappaB p65 further confirmed GGT promoter activation via NF-kappaB. Linker insertion mutagenesis of 536 bp of the proximal GGT promoter revealed NF-kappaB and Sp1 binding sites at -110 and -78 relative to the transcription start site, responsible for basal GGT transcription. Mutation of the NF-kappaB site located at -110 additionally inhibited TNFalpha-induced promoter induction. Chromatin immunoprecipitation (ChIP) assays confirmed mutagenesis results and further demonstrated that TNFalpha treatment induced in vivo binding of both NF-kappaB and Sp1, explaining increased GGT expression, and led to RNA polymerase II recruitment under inflammatory conditions. [less ▲]

Detailed reference viewed: 76 (1 UL)