![]() Urcun, Stephane ![]() in Advances in Applied Mechanics (2022), 55 Clinical management of cancer has continuously evolved for several decades. Biochemical, molecular and genomics approaches have brought and still bring numerous insights into cancerous diseases. It is now ... [more ▼] Clinical management of cancer has continuously evolved for several decades. Biochemical, molecular and genomics approaches have brought and still bring numerous insights into cancerous diseases. It is now accepted that some phenomena, allowed by favorable biological conditions, emerge via mechanical signaling at the cellular scale and via mechanical forces at the macroscale. Mechanical phenomena in cancer have been studied in-depth over the last decades, and their clinical applications are starting to be understood. If numerous models and experimental setups have been proposed, only a few have led to clinical applications. The objective of this contribution is to propose to review a large scope of mechanical findings which have consequences on the clinical management of cancer. This review is mainly addressed to doctoral candidates in mechanics and applied mathematics who are faced with the challenge of the mechanics-based modeling of cancer with the aim of clinical applications. We show that the collaboration of the biological and mechanical approaches has led to promising advances in terms of modeling, experimental design and therapeutic targets. Additionally, a specific focus is brought on imaging-informed mechanics-based models, which we believe can further the development of new therapeutic targets and the advent of personalized medicine. We study in detail several successful workflows on patient-specific targeted therapies based on mechanistic modeling. [less ▲] Detailed reference viewed: 34 (0 UL)![]() Urcun, Stephane ![]() in Journal of the Mechanical Behavior of Biomedical Materials (2021), 126 This paper investigates the complex time-dependent behavior of cortex tissue, under adiabatic condition, using a two-phase flow poroelastic model. Motivated by experiments and Biot's consolidation theory ... [more ▼] This paper investigates the complex time-dependent behavior of cortex tissue, under adiabatic condition, using a two-phase flow poroelastic model. Motivated by experiments and Biot's consolidation theory, we tackle time-dependent uniaxial loading, confined and unconfined, with various geometries and loading rates from 1 micrometer/sec to 100 micrometer/sec. The cortex tissue is modeled as the porous solid saturated by two immiscible fluids, with dynamic viscosities separated by four orders, resulting in two different characteristic times. These are respectively associated to interstitial fluid and glial cells. The partial differential equations system is discretised in space by the finite element method and in time by Euler-implicit scheme. The solution is computed using a monolithic scheme within the open-source computational framework FEniCS. The parameters calibration is based on Sobol sensitivity analysis, which divides them into two groups: the tissue specific group, whose parameters represent general properties, and sample specific group, whose parameters have greater variations. Our results show that the experimental curves can be reproduced without the need to resort to viscous solid effects, by adding an additional fluid phase. Through this process, we aim to present multiphase poromechanics as a promising way to a unified brain tissue modeling framework in a variety of settings. [less ▲] Detailed reference viewed: 33 (0 UL) |
||