![]() ; ; et al in IEEE Transactions on Wireless Communications (2016), 15(9), 6400-6411 We consider the problem of sum-rate maximization in multiple-input multiple-output (MIMO) amplify-and-forward relay networks with multi-operator. The aim is to design the MIMO relay amplification matrix ... [more ▼] We consider the problem of sum-rate maximization in multiple-input multiple-output (MIMO) amplify-and-forward relay networks with multi-operator. The aim is to design the MIMO relay amplification matrix (i.e., the relay beamformer) to maximize the achievable communication sum rate through the relay. The design problem for the case of single-antenna users can be cast as a non-convex optimization problem, which, in general, belongs to a class of NP-hard problems. We devise a method based on the minorization-maximization technique to obtain quality solutions to the problem. Each iteration of the proposed method consists of solving a strictly convex unconstrained quadratic program. This task can be done quite efficiently, such that the suggested algorithm can handle the beamformer design for relays with up to ~70 antennas within a few minutes on an ordinary personal computer. Such a performance lays the ground for the proposed method to be employed in medium-scale (or lower regime massive) MIMO scenarios. [less ▲] Detailed reference viewed: 163 (4 UL)![]() ; ; et al in Acoustics, Speech and Signal Processing (ICASSP), 2016 IEEE International Conference on (2016, May) We consider the problem of sum-rate maximization in massive MIMO two-way relay networks with multiple (communication) operators employing the amplify-and-forward (AF) protocol. The aim is to design the ... [more ▼] We consider the problem of sum-rate maximization in massive MIMO two-way relay networks with multiple (communication) operators employing the amplify-and-forward (AF) protocol. The aim is to design the relay amplification matrix (i.e., the relay beamformer) to maximize the achievable communication sum-rate through the relay. The design problem for the case of single-antenna users can be cast as a non-convex optimization problem, which in general, belongs to a class of NP-hard problems. We devise a method based on the minorization-maximization technique to obtain quality solutions to the problem. Each iteration of the proposed method consists of solving a strictly convex unconstrained quadratic program; this task can be done quite efficiently such that the suggested algorithm can handle the beamformer design for relays with up to ~ 70 antennas within a few minutes on an ordinary PC. Such a performance lays the ground for the proposed method to be employed in massive MIMO scenarios. [less ▲] Detailed reference viewed: 147 (2 UL) |
||