References of "Mittelbronn, Michel 50026633"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailPatient-derived organoids and orthotopic xenografts of primary and recurrent gliomas represent relevant patient avatars for precision oncology.
Golebiewska, Anna UL; Hau, Ann-Christin; Oudin, Anaïs et al

in Acta neuropathologica (2020)

Patient-based cancer models are essential tools for studying tumor biology and for the assessment of drug responses in a translational context. We report the establishment a large cohort of unique ... [more ▼]

Patient-based cancer models are essential tools for studying tumor biology and for the assessment of drug responses in a translational context. We report the establishment a large cohort of unique organoids and patient-derived orthotopic xenografts (PDOX) of various glioma subtypes, including gliomas with mutations in IDH1, and paired longitudinal PDOX from primary and recurrent tumors of the same patient. We show that glioma PDOXs enable long-term propagation of patient tumors and represent clinically relevant patient avatars that retain histopathological, genetic, epigenetic, and transcriptomic features of parental tumors. We find no evidence of mouse-specific clonal evolution in glioma PDOXs. Our cohort captures individual molecular genotypes for precision medicine including mutations in IDH1, ATRX, TP53, MDM2/4, amplification of EGFR, PDGFRA, MET, CDK4/6, MDM2/4, and deletion of CDKN2A/B, PTCH, and PTEN. Matched longitudinal PDOX recapitulate the limited genetic evolution of gliomas observed in patients following treatment. At the histological level, we observe increased vascularization in the rat host as compared to mice. PDOX-derived standardized glioma organoids are amenable to high-throughput drug screens that can be validated in mice. We show clinically relevant responses to temozolomide (TMZ) and to targeted treatments, such as EGFR and CDK4/6 inhibitors in (epi)genetically defined subgroups, according to MGMT promoter and EGFR/CDK status, respectively. Dianhydrogalactitol (VAL-083), a promising bifunctional alkylating agent in the current clinical trial, displayed high therapeutic efficacy, and was able to overcome TMZ resistance in glioblastoma. Our work underscores the clinical relevance of glioma organoids and PDOX models for translational research and personalized treatment studies and represents a unique publicly available resource for precision oncology. [less ▲]

Detailed reference viewed: 112 (4 UL)
Full Text
Peer Reviewed
See detailPituitary Tumor Transforming Gene 1 Orchestrates Gene Regulatory Variation in Mouse Ventral Midbrain During Aging
Gui, Yujuan UL; Thomas, Mélanie H.; Garcia, Pierre et al

in Frontiers in Genetics (2020)

Dopaminergic neurons in the midbrain are of particular interest due to their role in diseases such as Parkinson’s disease and schizophrenia. Genetic variation between individuals can affect the integrity ... [more ▼]

Dopaminergic neurons in the midbrain are of particular interest due to their role in diseases such as Parkinson’s disease and schizophrenia. Genetic variation between individuals can affect the integrity and function of dopaminergic neurons but the DNA variants and molecular cascades modulating dopaminergic neurons and other cells types of ventral midbrain remain poorly defined. Three genetically diverse inbred mouse strains – C57BL/6J, A/J, and DBA/2J – differ significantly in their genomes (∼7 million variants), motor and cognitive behavior, and susceptibility to neurotoxins. To further dissect the underlying molecular networks responsible for these variable phenotypes, we generated RNA-seq and ChIP-seq data from ventral midbrains of the 3 mouse strains. We defined 1000–1200 transcripts that are differentially expressed among them. These widespread differences may be due to altered activity or expression of upstream transcription factors. Interestingly, transcription factors were significantly underrepresented among the differentially expressed genes, and only one transcription factor, Pttg1, showed significant differences between all three strains. The changes in Pttg1 expression were accompanied by consistent alterations in histone H3 lysine 4 trimethylation at Pttg1 transcription start site. The ventral midbrain transcriptome of 3-month-old C57BL/6J congenic Pttg1–/– mutants was only modestly altered, but shifted toward that of A/J and DBA/2J in 9-month-old mice. Principle component analysis (PCA) identified the genes underlying the transcriptome shift and deconvolution of these bulk RNA-seq changes using midbrain single cell RNA-seq data suggested that the changes were occurring in several different cell types, including neurons, oligodendrocytes, and astrocytes. Taken together, our results show that Pttg1 contributes to gene regulatory variation between mouse strains and influences mouse midbrain transcriptome during aging. [less ▲]

Detailed reference viewed: 68 (6 UL)
Full Text
Peer Reviewed
See detailPrimary and recurrent glioma patient-derived orthotopic xenografts (PDOX) represent relevant patient avatars for precision medicine
Golebiewska, Anna UL; Hau, Ann-Christin; Oudin, Anais et al

E-print/Working paper (2020)

Patient-derived cancer models are essential tools for studying tumor biology and preclinical interventions. Here, we show that glioma patient-derived orthotopic xenografts (PDOXs) enable long-term ... [more ▼]

Patient-derived cancer models are essential tools for studying tumor biology and preclinical interventions. Here, we show that glioma patient-derived orthotopic xenografts (PDOXs) enable long-term propagation of patient tumors and represent clinically relevant patient avatars. We created a large collection of PDOXs from primary and recurrent gliomas with and without mutations in IDH1, which retained histopathological, genetic, epigenetic and transcriptomic features of patient tumors with no mouse-specific clonal evolution. Longitudinal PDOX models recapitulate the limited genetic evolution of gliomas observed in patient tumors following treatment. PDOX-derived standardized tumor organoid cultures enabled assessment of drug responses, which were validated in mice. PDOXs showed clinically relevant responses to Temozolomide and to targeted treatments such as EGFR and CDK4/6 inhibitors in (epi)genetically defined groups, according to MGMT promoter and EGFR/CDK status respectively. Dianhydrogalactitol, a bifunctional alkylating agent, showed promising potential against glioblastoma. Our study underlines the clinical relevance of glioma PDOX models for translational research and personalized treatment studies. [less ▲]

Detailed reference viewed: 81 (1 UL)
Full Text
Peer Reviewed
See detailHypoxia-induced Autophagy Drives Colorectal Cancer Initiation and Progression by Activating the PRKC/PKC-EZR (Ezrin) Pathway
Qureshi-Baig, Komal; Kuhn; Viry, Elodie et al

in Autophagy (2019)

In solid tumors, cancer stem cells (CSCs) or tumor-initiating cells (TICs) are often found in hypoxic niches. Nevertheless, the influence of hypoxia on TICs is poorly understood. Using previously ... [more ▼]

In solid tumors, cancer stem cells (CSCs) or tumor-initiating cells (TICs) are often found in hypoxic niches. Nevertheless, the influence of hypoxia on TICs is poorly understood. Using previously established, TIC-enriched patient-derived colorectal cancer (CRC) cultures, we show that hypoxia increases the self-renewal capacity of TICs while inducing proliferation arrest in their more differentiated counterpart cultures. Gene expression data revealed macroautophagy/autophagy as one of the major pathways induced by hypoxia in TICs. Interestingly, hypoxia-induced autophagy was found to induce phosphorylation of EZR (ezrin) at Thr567 residue, which could be reversed by knocking down ATG5, BNIP3, BNIP3L, or BECN1. Furthermore, we identified PRKCA/PKCα as a potential kinase involved in hypoxia-induced autophagy-mediated TIC self-renewal. Genetic targeting of autophagy or pharmacological inhibition of PRKC/PKC and EZR resulted in decreased tumor-initiating potential of TICs. In addition, we observed significantly reduced in vivo tumor initiation and growth after a stable knockdown of ATG5. Analysis of human CRC samples showed that p-EZR is often present in TICs located in the hypoxic and autophagic regions of the tumor. Altogether, our results establish the hypoxia-autophagy-PKC-EZR signaling axis as a novel regulatory mechanism of TIC self-renewal and CRC progression. Autophagy inhibition might thus represent a promising therapeutic strategy for cancer patients. [less ▲]

Detailed reference viewed: 121 (9 UL)
Peer Reviewed
See detailPATH-29. POTENTIAL OF RAMAN SPECTROSCOPY IN ONCOLOGICAL NEUROSURGERY
Kleine Borgmann, Felix; Husch, Andreas UL; Slimani, Redouane et al

Poster (2019)

Raman spectroscopy (RS) has gained increasing interest for the analysis of biological tissues within the recent years. It is a label-free, non-destructive method providing insights in biochemical ... [more ▼]

Raman spectroscopy (RS) has gained increasing interest for the analysis of biological tissues within the recent years. It is a label-free, non-destructive method providing insights in biochemical properties of tumor cells. It is possible to compare RS signals with histological properties of identical tissue parts. Therefore, RS bears promising potentials in neurosurgical neurooncology. On one hand, it could potentially be used for both intraoperative tumor diagnostics and resection control. On the other hand, it could provide important knowledge on tumor biochemistry and used for a subclassification of tumors with a potential impact on personalized therapy approaches. Within our group, we analyzed over 3000 measurement points in different brain tumors ex vivo with a robotized RS system and correlated the spectral curves with histopathological results. We separated and subclassified the data by AI-based methods. Additionally, we compared the latter results with those of a handheld probe, which is potentially navigatable for in vivo, intraoperative applications. We could demonstrate, that it is possible to separate distinct tumor groups only based on RS signals, especially by using computer-based signal analysis. Furthermore, we could demonstrate the differences of the spectra of deep-frozen and formalin-fixed tissues versus non-fixed tissues. Based on our results, we will highlight the potentials of RS for intraoperative neurosurgical application in resection control for brain tumors, as well as we will focus on the potentials for brain tumor diagnostics based purely on this method or by using it as an adjunct. Those methods bear additional potentials in the field of personalized chemotherapy approaches. [less ▲]

Detailed reference viewed: 75 (3 UL)