![]() ![]() ; ; et al in Movement Disorders (2014), 29(7), 921-7 Musician's dystonia (MD) affects 1% to 2% of professional musicians and frequently terminates performance careers. It is characterized by loss of voluntary motor control when playing the instrument ... [more ▼] Musician's dystonia (MD) affects 1% to 2% of professional musicians and frequently terminates performance careers. It is characterized by loss of voluntary motor control when playing the instrument. Little is known about genetic risk factors, although MD or writer's dystonia (WD) occurs in relatives of 20% of MD patients. We conducted a 2-stage genome-wide association study in whites. Genotypes at 557,620 single-nucleotide polymorphisms (SNPs) passed stringent quality control for 127 patients and 984 controls. Ten SNPs revealed P < 10(-5) and entered the replication phase including 116 MD patients and 125 healthy musicians. A genome-wide significant SNP (P < 5 x 10(-8) ) was also genotyped in 208 German or Dutch WD patients, 1,969 Caucasian, Spanish, and Japanese patients with other forms of focal or segmental dystonia as well as in 2,233 ethnically matched controls. Genome-wide significance with MD was observed for an intronic variant in the arylsulfatase G (ARSG) gene (rs11655081; P = 3.95 x 10(-9) ; odds ratio [OR], 4.33; 95% confidence interval [CI], 2.66-7.05). rs11655081 was also associated with WD (P = 2.78 x 10(-2) ) but not with any other focal or segmental dystonia. The allele frequency of rs11655081 varies substantially between different populations. The population stratification in our sample was modest (lambda = 1.07), but the effect size may be overestimated. Using a small but homogenous patient sample, we provide data for a possible association of ARSG with MD. The variant may also contribute to the risk of WD, a form of dystonia that is often found in relatives of MD patients. [less ▲] Detailed reference viewed: 219 (13 UL)![]() ![]() Grünewald, Anne ![]() in PloS one (2010), 5(9), 12962 BACKGROUND: Mutations in Parkin are the most common cause of autosomal recessive Parkinson disease (PD). The mitochondrially localized E3 ubiquitin-protein ligase Parkin has been reported to be involved ... [more ▼] BACKGROUND: Mutations in Parkin are the most common cause of autosomal recessive Parkinson disease (PD). The mitochondrially localized E3 ubiquitin-protein ligase Parkin has been reported to be involved in respiratory chain function and mitochondrial dynamics. More recent publications also described a link between Parkin and mitophagy. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we investigated the impact of Parkin mutations on mitochondrial function and morphology in a human cellular model. Fibroblasts were obtained from three members of an Italian PD family with two mutations in Parkin (homozygous c.1072delT, homozygous delEx7, compound-heterozygous c.1072delT/delEx7), as well as from two relatives without mutations. Furthermore, three unrelated compound-heterozygous patients (delEx3-4/duplEx7-12, delEx4/c.924C>T and delEx1/c.924C>T) and three unrelated age-matched controls were included. Fibroblasts were cultured under basal or paraquat-induced oxidative stress conditions. ATP synthesis rates and cellular levels were detected luminometrically. Activities of complexes I-IV and citrate synthase were measured spectrophotometrically in mitochondrial preparations or cell lysates. The mitochondrial membrane potential was measured with 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide. Oxidative stress levels were investigated with the OxyBlot technique. The mitochondrial network was investigated immunocytochemically and the degree of branching was determined with image processing methods. We observed a decrease in the production and overall concentration of ATP coinciding with increased mitochondrial mass in Parkin-mutant fibroblasts. After an oxidative insult, the membrane potential decreased in patient cells but not in controls. We further determined higher levels of oxidized proteins in the mutants both under basal and stress conditions. The degree of mitochondrial network branching was comparable in mutants and controls under basal conditions and decreased to a similar extent under paraquat-induced stress. CONCLUSIONS: Our results indicate that Parkin mutations cause abnormal mitochondrial function and morphology in non-neuronal human cells. [less ▲] Detailed reference viewed: 133 (2 UL) |
||