References of "Hanrahan, Brendan"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailThe other model antiferroelectric: PbHfO3 thin films from ALD precursors
Hanrahan, Brendan; Milesi-Brault, Cosme; Leff, Asher et al

in APL MATERIALS (2021), 9(2),

Antiferroelectric PbHfO3 is grown from atomic layer deposition precursors lead bis(dimethylaminomethylpropanolate) and tetrakis dimethylamino hafnium with H2O and O-3 oxidizers in thicknesses from 20 nm ... [more ▼]

Antiferroelectric PbHfO3 is grown from atomic layer deposition precursors lead bis(dimethylaminomethylpropanolate) and tetrakis dimethylamino hafnium with H2O and O-3 oxidizers in thicknesses from 20 nm to 200 nm at a substrate temperature of 250 degrees C. X-ray analysis shows an as-grown crystalline PbO phase that diffuses into an amorphous HfO2 matrix upon annealing to form a randomly oriented, orthorhombic PbHfO3 thin film. Electrical characterization reveals characteristic double hysteresis loops with maximum polarizations of around 30 mu C/cm(2) and transition fields of 350 kV/cm-500 kV/cm depending on the thickness. Temperature-dependent permittivity and polarization testing show a phase transition at 185 degrees C, most probably to the paraelectric phase, but give no clear evidence for the intermediate phase known from bulk PbHfO3. The energy storage density for the films reaches 16 J/cm(3) at 2 MV/cm. A dielectric tunability of 221 is available within 1 V for the thinnest film. These results highlight the unique spectrum of properties available for thin film perovskite antiferroelectrics. [less ▲]

Detailed reference viewed: 48 (1 UL)