References of "Grand, Pierre-Philippe"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailPrediction of Photovoltaic Cu(In,Ga)Se2 p-n Device Performance by forward Bias Electrochemical Analysis of Only the p-Type Cu(In,Ga)Se2 Films
Colombara, Diego UL; Bertram, Tobias UL; Depredurand, Valérie UL et al

in Electrochemical Society Transactions (2015), 66(6), 19-25

This work is an attempt to rate the quality of Mo/Cu(In,Ga)Se2 films intended for fabrication of photovoltaic devices. The procedure is based on the simple current-voltage electrochemical analysis of the ... [more ▼]

This work is an attempt to rate the quality of Mo/Cu(In,Ga)Se2 films intended for fabrication of photovoltaic devices. The procedure is based on the simple current-voltage electrochemical analysis of the bilayer in a Eu2+/3+-containing electrolyte solution. Two series of bilayer samples were tested electrochemically, while sister samples were completed into Mo/Cu(In,Ga)Se2/CdS/i-ZnO/Al:ZnO/Ni-Al solid state devices and their current-voltage characteristics measured in the dark. A correlation was found between the reverse saturation current density of the solid state devices and an analogous parameter extracted from the electrochemical response in forward bias. While Eu2+ was found to be metastable in water posing restrictions to the application, reproducible measurements were achieved with a methanol-based solution. The intrinsic simplicity of the proposed methodology makes it particularly suitable for the implementation of a low-cost diagnostic tool. [less ▲]

Detailed reference viewed: 200 (8 UL)
Full Text
Peer Reviewed
See detailPrediction of photovoltaic p-n device short circuit current by photoelectrochemical analysis of p-type CIGSe films
Colombara, Diego UL; Crossay, Alexandre UL; Regesch, David UL et al

in Electrochemistry Communications (2014), 48

The quality control of individual semiconductor thin films during fabrication of multiple layers is important for industry and academia. The ultimate aim of this research is to predict the efficiency of p ... [more ▼]

The quality control of individual semiconductor thin films during fabrication of multiple layers is important for industry and academia. The ultimate aim of this research is to predict the efficiency of p-–n junction solar cells by photoelectrochemical analysis of the bare p-type semiconductor. A linear correlation between the photocurrent measured electrochemically on Cu(In,Ga)Se2 absorber layers through a Eu3+ electrolyte junction and short circuit current and efficiency of the corresponding solid state devices is found. However, the correlation is complicated by pronounced recombination at the semiconductor/electrolyte interface, while the solid state interface behaves more ideally. [less ▲]

Detailed reference viewed: 224 (9 UL)