![]() ; Ha, Vu Nguyen ![]() in 2017 IEEE Wireless Communications and Networking Conference (WCNC) proceedings (2017, March 19) In this paper, we study the resource allocation problem for a full-duplex (FD) multiuser wireless system consisting of one FD base-station (BS) and multiple FD mobile nodes. Our main focus is to jointly ... [more ▼] In this paper, we study the resource allocation problem for a full-duplex (FD) multiuser wireless system consisting of one FD base-station (BS) and multiple FD mobile nodes. Our main focus is to jointly optimize the power allocation (PA) and subcarrier assignment (SA) for both uplink (UL) and downlink (DL) transmissions of all users to maximize the system sum-rate. Our design captures the self-interference of FD transceivers and allows the utilization of each subcarrier for multiple concurrent UP and DL transmissions. Since the joint optimization problem is a nonconvex mixed integer program, which is difficult to tackle, we propose to employ the bipartite matching method to address the SA. Toward this end, a fast greedy allocation algorithm is developed to perform initial assignment of UL/DL links to each subcarrier that offers the best sum rate. Then from the obtained SA solution, we adopt the successive convex approximation approach to solve the PA problem whose results are used to calculate the SA weights for re-optimizing the SA by using the bipartite matching method. We then present the numerical results to demonstrate the improvement of our proposed algorithm in comparison with the greedy FD and half-duplex (HD) resource allocation algorithms. [less ▲] Detailed reference viewed: 38 (0 UL)![]() ; Ha, Vu Nguyen ![]() in 2016 IEEE 84th Vehicular Technology Conference (VTC-Fall) proceedings (2016, September 18) This paper focuses on the resource allocation in a full-duplex (FD) multiuser single cell system consisting of one FD base-station (BS) and multiple FD mobile nodes. In particular, we are interested in ... [more ▼] This paper focuses on the resource allocation in a full-duplex (FD) multiuser single cell system consisting of one FD base-station (BS) and multiple FD mobile nodes. In particular, we are interested in jointly optimizing the power allocation (PA) and subcarrier assignment (SA) for uplink (UL) and downlink (DL) transmission of all users to maximize the system sum-rate. First, the joint optimization problem is formulated as nonconvex mixed integer program, a difficult nonconvex problem. We then propose an iterative algorithm to solve this problem. In the proposed algorithm, the PA is obtained by employing the SCALE algorithm, whereas the SA is updated by a gradient method. Finally, we present numerical results to demonstrate the significant gains of our proposed design compared to that due to two fast greedy algorithms. [less ▲] Detailed reference viewed: 39 (0 UL) |
||