![]() ; ; Antony, Paul ![]() in NPJ systems biology and applications (2020), 6(1), 38 Mitochondrial dysfunction is linked to pathogenesis of Parkinson's disease (PD). However, individual mitochondria-based analyses do not show a uniform feature in PD patients. Since mitochondria interact ... [more ▼] Mitochondrial dysfunction is linked to pathogenesis of Parkinson's disease (PD). However, individual mitochondria-based analyses do not show a uniform feature in PD patients. Since mitochondria interact with each other, we hypothesize that PD-related features might exist in topological patterns of mitochondria interaction networks (MINs). Here we show that MINs formed nonclassical scale-free supernetworks in colonic ganglia both from healthy controls and PD patients; however, altered network topological patterns were observed in PD patients. These patterns were highly correlated with PD clinical scores and a machine-learning approach based on the MIN features alone accurately distinguished between patients and controls with an area-under-curve value of 0.989. The MINs of midbrain dopaminergic neurons (mDANs) derived from several genetic PD patients also displayed specific changes. CRISPR/CAS9-based genome correction of alpha-synuclein point mutations reversed the changes in MINs of mDANs. Our organelle-interaction network analysis opens another critical dimension for a deeper characterization of various complex diseases with mitochondrial dysregulation. [less ▲] Detailed reference viewed: 64 (1 UL)![]() Binck, Sylvia ![]() ![]() in Frontiers in neurology (2020), 11 Background: To establish the frequency of impulse control disorder (ICD) in Parkinson's disease (PD). Methods: Within the Luxembourg Parkinson's Study, PD patients were evaluated for ICD presence (score ≥ ... [more ▼] Background: To establish the frequency of impulse control disorder (ICD) in Parkinson's disease (PD). Methods: Within the Luxembourg Parkinson's Study, PD patients were evaluated for ICD presence (score ≥ 1 on MDS-UPDRS I item 1.6), use of dopamine agonists (DA) and other medications. Results: 470 patients were enrolled. Among 217 patients without DA use, 6.9% scored positive for ICD, vs. 15.4% among 253 patients with DA use (p = 0.005). The regression analysis showed that age at PD diagnosis had only a minor impact on ICD occurrence, while there was no influence by gender or co-medications. The longitudinal study over 2 years in 156 patients demonstrated increasing ICD frequency in DA users (p = 0.005). Conclusion: This large and non-interventional study confirms that PD patients with DA treatment show higher frequency of ICD than patients without DA use. It newly demonstrates that ICD can develop independently from age, gender, or co-medications. [less ▲] Detailed reference viewed: 65 (4 UL)![]() Hipp Epouse D'amico, Géraldine ![]() in Frontiers in Aging Neuroscience (2018), 10 While genetic advances have successfully defined part of the complexity in Parkinson’s disease (PD), the clinical characterization of phenotypes remains challenging. Therapeutic trials and cohort studies ... [more ▼] While genetic advances have successfully defined part of the complexity in Parkinson’s disease (PD), the clinical characterization of phenotypes remains challenging. Therapeutic trials and cohort studies typically include patients with earlier disease stages and exclude comorbidities, thus ignoring a substantial part of the real-world PD population. To account for these limitations, we implemented the Luxembourg PD study as a comprehensive clinical, molecular and device-based approach including patients with typical PD and atypical parkinsonism, irrespective of their disease stage, age, comorbidities, or linguistic background. To provide a large, longitudinally followed, and deeply phenotyped set of patients and controls for clinical and fundamental research on PD, we implemented an open-source digital platform that can be harmonized with international PD cohort studies. Our interests also reflect Luxembourg-specific areas of PD research, including vision, gait, and cognition. This effort is flanked by comprehensive biosampling efforts assuring high quality and sustained availability of body liquids and tissue biopsies. We provide evidence for the feasibility of such a cohort program with deep phenotyping and high quality biosampling on parkinsonism in an environment with structural specificities and alert the international research community to our willingness to collaborate with other centers. The combination of advanced clinical phenotyping approaches including device-based assessment will create a comprehensive assessment of the disease and its variants, its interaction with comorbidities and its progression. We envision the Luxembourg Parkinson’s study as an important research platform for defining early diagnosis and progression markers that translate into stratified treatment approaches. [less ▲] Detailed reference viewed: 296 (20 UL)![]() Antony, Paul ![]() ![]() ![]() in Annals of clinical and translational neurology (2015), 2(1), 67-73 OBJECTIVE: Mitochondrial dysfunction is a hallmark of idiopathic Parkinson's disease (IPD), which has been reported not to be restricted to striatal neurons. However, studies that analyzed mitochondrial ... [more ▼] OBJECTIVE: Mitochondrial dysfunction is a hallmark of idiopathic Parkinson's disease (IPD), which has been reported not to be restricted to striatal neurons. However, studies that analyzed mitochondrial function at the level of selected enzymatic activities in peripheral tissues have produced conflicting data. We considered the electron transport chain as a complex system with mitochondrial membrane potential as an integrative indicator for mitochondrial fitness. METHODS: Twenty-five IPD patients (nine females; mean disease duration, 6.2 years) and 16 healthy age-matched controls (12 females) were recruited. Live platelets were purified using magnetic-activated cell sorting (MACS) and single-cell data on mitochondrial membrane potential (Deltapsi) were measured by cytometry and challenged with a protonophore agent. RESULTS: Functional mitochondrial membrane potential was detected in all participants. The challenge test reduced the membrane potential in all IPD patients and controls (P < 0.001). However, the response to the challenge was not significantly different between patients and controls. INTERPRETATION: While the reported protonophore challenge assay is a valid marker of overall mitochondrial function in live platelets, intact mitochondrial membrane potential in platelets derived from IPD patients suggests that presumed mitochondrial enzymatic deficiencies are compensable in this cell type. In consequence, mitochondrial membrane potential in platelets cannot be used as a diagnostic biomarker for nonstratified IPD but should be further explored in potential Parkinson's disease subtypes and tissues with higher energy demands. [less ▲] Detailed reference viewed: 206 (6 UL) |
||