![]() ; ; et al in Materials (2022), 15 This study aims to present various forms of cellulose, whose shape depends on the source of origin, and to demonstrate the differences in the influence on the properties of materials produced with its ... [more ▼] This study aims to present various forms of cellulose, whose shape depends on the source of origin, and to demonstrate the differences in the influence on the properties of materials produced with its participation. For this purpose, composites with various plant additives have been designed and obtained. Some of them have undergone chemical and pyrolytic modifications. The results of the mechanical, physicochemical and microscopic tests showed differences in cellulose structure, even in the case of very similar sources, and its diversified influence on the characteristics of the obtained materials. The research shows the effect of the use of natural additives and their modified versions on the mechanical properties of the composite based on epoxy resin. It turns out that cellulose modifiers are not only fillers that reduce the price of the final product but can also increase some mechanical properties, e.g., compressive strength, which is an additional advantage and a reason for wider use. The potential of natural resources is not yet fully understood. Relatively recently, people have started to be interested in cellulose on a nanometric scale, as it turns out that it can exist in several different forms with interesting properties. [less ▲] Detailed reference viewed: 27 (4 UL)![]() ; Kedziora, Slawomir ![]() ![]() in Materials (2022), 15(22), 8135 The present paper analyses the properties of printed polylactic acid (PLA) samples with admixtures of graphene nanopowder (GNP) at wt. 1%, 2% and 4%. The pure polylactide and admixed polylactide printed ... [more ▼] The present paper analyses the properties of printed polylactic acid (PLA) samples with admixtures of graphene nanopowder (GNP) at wt. 1%, 2% and 4%. The pure polylactide and admixed polylactide printed samples were examined to determine their chemical-physical properties, stiffness, and strength parameters. The tests of tensile, dynamic mechanical analysis (DMA), difference thermogravimetric (TG), and differential scanning calorimetry (DSC) were executed before and after UV (ultraviolet) treatment. The first part of the paper shows the process of manufacturing granulates and filaments mixed with graphene. The second part of the paper concerns the results of the tests made on printed samples. The analysed samples were printed using a Prusa i3 MK3 printer. It transpired that the content of graphene at 1% improved the mechanical parameters of the printed composite by organising its structure. Increasing the amount of graphene caused the values of the measured parameters to drop. This research indicates how important it is to determine the optimal values of nanoadditives in biopolymers. [less ▲] Detailed reference viewed: 21 (0 UL)![]() ; Kedziora, Slawomir ![]() in Materials (2019), 13(74), 1-12 This work deals with the investigation of a steel thin-walled C-column subjected to compression due to temperature increase. These experimental studies of the compressed columns in post-buckling state ... [more ▼] This work deals with the investigation of a steel thin-walled C-column subjected to compression due to temperature increase. These experimental studies of the compressed columns in post-buckling state were conducted to determine their load-carrying capacity. To ensure appropriate supports and keeping of columns, plates with grooves were constructed. The tests of the columns' compression for different preloads were carried out. By comparing the experiment results, numerical calculations based on the finite element method (FEM) and the semi-analytical method (SAM) of solution were performed. The computations were executed with the use of full material characteristics with consideration of large strains and deflections. Furthermore, while observing the deformation of columns, a non-contact Digital Correlation ARAMIS\textregistered system was employed whose calculated results of deformations are very close to the results of the numerical method. The paper revealed that maximum recorded loads under temperature rise are comparable regardless of a value of initial load. A good correlation in results between used methods was achieved. The main goal of the present work was to assess of behavior of thin-walled compressed steel columns in a temperature-controlled environment till their full damage [less ▲] Detailed reference viewed: 72 (4 UL) |
||