![]() Sharma, Shree Krishna ![]() ![]() in Proceedings of International Conference on Communications 2015 (2015, June) Exploring innovative cellular architectures to achieve enhanced system capacity and good coverage has become a critical issue towards realizing the fifth generation (5G) of wireless communications. In ... [more ▼] Exploring innovative cellular architectures to achieve enhanced system capacity and good coverage has become a critical issue towards realizing the fifth generation (5G) of wireless communications. In this context, this paper proposes a novel concept of an intelligent Amplify and Forward (AF) 5G repeater for enabling the densification of future cellular networks. The proposed repeater features a Spectrum Sensing (SS) intelligence capability and utilizes such intelligence in a complementary fashion in comparison to its existing counterpart (e.g., Cognitive Radio) by detecting the active channels within the assigned spectrum. This intelligence allows the proposed repeater to carry out selective amplification of the active channels in contrast to the full amplification in conventional AF repeaters. Furthermore, the performance of a Frequency Division Multiple Access (FDMA) based two hop cellular network utilizing the proposed repeater is evaluated in terms of the system throughput. Simulation results demonstrate up to 13 % increase when compared with the conventional repeaters. Moreover, the effect of SS errors on the system capacity is analyzed. [less ▲] Detailed reference viewed: 294 (11 UL)![]() Sharma, Shree Krishna ![]() in Transactions on Emerging Telecommunications Technologies (2013) Herein, we study the feasibility of enhanced information throughput capability of multiple input multiple output orthogonal frequency division multiplexing (MIMO-OFDM) based wireless communication systems ... [more ▼] Herein, we study the feasibility of enhanced information throughput capability of multiple input multiple output orthogonal frequency division multiplexing (MIMO-OFDM) based wireless communication systems in the context of increasing wireless capacity demand. The concept of fractional sampling (FS) is exploited for this purpose to take advantage of diversity created because of it. Furthermore, a novel channel adaptive iterative sequence detector is proposed using the FS technique. The performance analysis of the proposed receiver is carried out, and a tighter performance bound is derived. It is found that the FS technique can improve bit error rate performance of MIMO and OFDM based systems provided that the noise samples are uncorrelated up to a certain level of FS rate. Moreover, it is observed that the performance improvement is a non-linear function of the FS rate. Besides this, the simulation results show that the proposed iterative receiver can significantly enhance the information throughput of MIMO-OFDM based wireless communication systems in comparison to conventional non-iterative receivers. [less ▲] Detailed reference viewed: 132 (8 UL)![]() Sharma, Shree Krishna ![]() in IET Signal Processing (2013) Increasing demand of high-speed data rate is leading to a challenging task to provide services to the users within exponentially growing market for wireless multimedia services. Subsequently, the ... [more ▼] Increasing demand of high-speed data rate is leading to a challenging task to provide services to the users within exponentially growing market for wireless multimedia services. Subsequently, the available radio resources are becoming scarce because of different factors such as spectrum segmentation and dedicated frequency allocation to existing wireless standards. Exploring new techniques for enhancing the spectral efficiency in wireless communication has been an important research challenge. In this study, the enhancement of spectral efficiency of wireless communication systems is considered. A framework is proposed to implement the concept of compressive sampling (CS) for compressing the natural random signals. The performance of proposed framework is evaluated in the context of multiple input multiple output orthogonal frequency division multiplexing system. Simulation-based results show that 25% of resources can be saved by marginal trade-off with the quality of service (QoS) requirement applying CS to the natural random signals. Furthermore, it can be claimed that this QoS trade-off can be optimised with dynamic selection of random measurement matrices. [less ▲] Detailed reference viewed: 132 (10 UL) |
||