References of "Aalizadeh, Reza"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailThe NORMAN Suspect List Exchange (NORMAN-SLE): facilitating European and worldwide collaboration on suspect screening in high resolution mass spectrometry
Mohammed Taha, Hiba UL; Aalizadeh, Reza; Alygizakis, Nikiforos et al

in Environmental Sciences Europe (2022), 34(1), 104

Abstract Background The NORMAN Association ( https://www.norman-network.com/ ) initiated the NORMAN Suspect List Exchange (NORMAN-SLE https://www.norman-network.com/nds/SLE/ ) in 2015, following the ... [more ▼]

Abstract Background The NORMAN Association ( https://www.norman-network.com/ ) initiated the NORMAN Suspect List Exchange (NORMAN-SLE https://www.norman-network.com/nds/SLE/ ) in 2015, following the NORMAN collaborative trial on non-target screening of environmental water samples by mass spectrometry. Since then, this exchange of information on chemicals that are expected to occur in the environment, along with the accompanying expert knowledge and references, has become a valuable knowledge base for “suspect screening” lists. The NORMAN-SLE now serves as a FAIR (Findable, Accessible, Interoperable, Reusable) chemical information resource worldwide. Results The NORMAN-SLE contains 99 separate suspect list collections (as of May 2022) from over 70 contributors around the world, totalling over 100,000 unique substances. The substance classes include per- and polyfluoroalkyl substances (PFAS), pharmaceuticals, pesticides, natural toxins, high production volume substances covered under the European REACH regulation (EC: 1272/2008), priority contaminants of emerging concern (CECs) and regulatory lists from NORMAN partners. Several lists focus on transformation products (TPs) and complex features detected in the environment with various levels of provenance and structural information. Each list is available for separate download. The merged, curated collection is also available as the NORMAN Substance Database (NORMAN SusDat). Both the NORMAN-SLE and NORMAN SusDat are integrated within the NORMAN Database System (NDS). The individual NORMAN-SLE lists receive digital object identifiers (DOIs) and traceable versioning via a Zenodo community ( https://zenodo.org/communities/norman-sle ), with a total of \textgreater 40,000 unique views, \textgreater 50,000 unique downloads and 40 citations (May 2022). NORMAN-SLE content is progressively integrated into large open chemical databases such as PubChem ( https://pubchem.ncbi.nlm.nih.gov/ ) and the US EPA’s CompTox Chemicals Dashboard ( https://comptox.epa.gov/dashboard/ ), enabling further access to these lists, along with the additional functionality and calculated properties these resources offer. PubChem has also integrated significant annotation content from the NORMAN-SLE, including a classification browser ( 101 ). Conclusions The NORMAN-SLE offers a specialized service for hosting suspect screening lists of relevance for the environmental community in an open, FAIR manner that allows integration with other major chemical resources. These efforts foster the exchange of information between scientists and regulators, supporting the paradigm shift to the “one substance, one assessment” approach. New submissions are welcome via the contacts provided on the NORMAN-SLE website ( https://www.norman-network.com/nds/SLE/ ). [less ▲]

Full Text
Peer Reviewed
See detailELIXIR and Toxicology: a community in development
Martens, Marvin; Stierum, Rob; Schymanski, Emma UL et al

in F1000Research (2021), 10

Toxicology has been an active research field for many decades, with academic, industrial and government involvement. Modern omics and computational approaches are changing the field, from merely disease ... [more ▼]

Toxicology has been an active research field for many decades, with academic, industrial and government involvement. Modern omics and computational approaches are changing the field, from merely disease-specific observational models into target-specific predictive models. Traditionally, toxicology has strong links with other fields such as biology, chemistry, pharmacology and medicine. With the rise of synthetic and new engineered materials, alongside ongoing prioritisation needs in chemical risk assessment for existing chemicals, early predictive evaluations are becoming of utmost importance to both scientific and regulatory purposes. ELIXIR is an intergovernmental organisation that brings together life science resources from across Europe. To coordinate the linkage of various life science efforts around modern predictive toxicology, the establishment of a new ELIXIR Community is seen as instrumental. In the past few years, joint efforts, building on incidental overlap, have been piloted in the context of ELIXIR. For example, the EU-ToxRisk, diXa, HeCaToS, transQST, and the nanotoxicology community have worked with the ELIXIR TeSS, Bioschemas, and Compute Platforms and activities. In 2018, a core group of interested parties wrote a proposal, outlining a sketch of what this new ELIXIR Toxicology Community would look like. A recent workshop (held September 30th to October 1st, 2020) extended this into an ELIXIR Toxicology roadmap and a shortlist of limited investment-high gain collaborations to give body to this new community. This Whitepaper outlines the results of these efforts and defines our vision of the ELIXIR Toxicology Community and how it complements other ELIXIR activities. [less ▲]

Detailed reference viewed: 31 (2 UL)
Full Text
Peer Reviewed
See detailDevelopment and Application of Liquid Chromatographic Retention Time Indices in HRMS-Based Suspect and Nontarget Screening
Aalizadeh, Reza; Alygizakis, Nikiforos A.; Schymanski, Emma UL et al

in Analytical Chemistry (2021), 93(33), 11601--11611

There is an increasing need for comparable and harmonized retention times (tR) in liquid chromatography (LC) among different laboratories, to provide supplementary evidence for the identity of compounds ... [more ▼]

There is an increasing need for comparable and harmonized retention times (tR) in liquid chromatography (LC) among different laboratories, to provide supplementary evidence for the identity of compounds in high-resolution mass spectrometry (HRMS)-based suspect and nontarget screening investigations. In this study, a rigorously tested, flexible, and less system-dependent unified retention time index (RTI) approach for LC is presented, based on the calibration of the elution pattern. Two sets of 18 calibrants were selected for each of ESI+ and ESI-based on the maximum overlap with the retention times and chemical similarity indices from a total set of 2123 compounds. The resulting calibration set, with RTI set to range between 1 and 1000, was proposed as the most appropriate RTI system after rigorous evaluation, coordinated by the NORMAN network. The validation of the proposed RTI system was done externally on different instrumentation and LC conditions. The RTI can also be used to check the reproducibility and quality of LC conditions. Two quantitative structure−retention relationship (QSRR)-based models were built based on the developed RTI systems, which assist in the removal of false-positive annotations. The applicability domains of the QSRR models allowed completing the identification process with higher confidence for substances within the domain, while indicating those substances for which results should be treated with caution. The proposed RTI system was used to improve confidence in suspect and nontarget screening and increase the comparability between laboratories as demonstrated for two examples. All RTI-related calculations can be performed online at http://rti.chem.uoa.gr/. [less ▲]

Detailed reference viewed: 115 (3 UL)
Full Text
Peer Reviewed
See detailThe NORMAN Association and the European Partnership for Chemicals Risk Assessment (PARC): let’s cooperate!
Dulio, Valeria; Koschorreck, Jan; van Bavel, Bert et al

in Environmental Sciences Europe (2020), 32(1), 1--11

The Partnership for Chemicals Risk Assessment (PARC) is currently under development as a joint research and innovation programme to strengthen the scientific basis for chemical risk assessment in the EU ... [more ▼]

The Partnership for Chemicals Risk Assessment (PARC) is currently under development as a joint research and innovation programme to strengthen the scientific basis for chemical risk assessment in the EU. The plan is to bring chemical risk assessors and managers together with scientists to accelerate method development and the production of necessary data and knowledge, and to facilitate the transition to next-generation evidence-based risk assessment, a non-toxic environment and the European Green Deal. The NORMAN Network is an independent, well-established and competent network of more than 80 organisations in the field of emerging substances and has enormous potential to contribute to the implementation of the PARC partnership. NORMAN stands ready to provide expert advice to PARC, drawing on its long experience in the development, harmonisation and testing of advanced tools in relation to chemicals of emerging concern and in support of a European Early Warning System to unravel the risks of contaminants of emerging concern (CECs) and close the gap between research and innovation and regulatory processes. In this commentary we highlight the tools developed by NORMAN that we consider most relevant to supporting the PARC initiative: (i) joint data space and cutting-edge research tools for risk assessment of contaminants of emerging concern; (ii) collaborative European framework to improve data quality and comparability; (iii) advanced data analysis tools for a European early warning system and (iv) support to national and European chemical risk assessment thanks to harnessing, combining and sharing evidence and expertise on CECs. By combining the extensive knowledge and experience of the NORMAN network with the financial and policy-related strengths of the PARC initiative, a large step towards the goal of a non-toxic environment can be taken. [less ▲]

Detailed reference viewed: 83 (5 UL)