Fast Abstract: Assessing software designs by simulation

Alfredo Capozucca
Laboratory for Advanced Software Systems
University of Luxembourg
6, rue Richard Coudenhove-Kalergi, Luxembourg
alfredo.capozucca@uni.lu

Abstract

This paper presents an approach to assess the design of
a software system which is modelled using the Coordinated
Atomic Actions (CAA) paradigm. The approach relies on
simulation to make possible the assessment of the design.
By simulating the design, engineers can assess its adher-
ence to the requirements elicited in previous phases of the
software development life cycle.

1. Introduction and Motivation

The Coordinated Atomic Actions paradigm [5] was de-
fined to enclose the concepts of conversations, transaction
processing, and exception handling around the notion of
atomic action. This paradigm has proven ! to be useful
when designing distributed software systems meant to hold
dependability-related requirements.

However, despite of relying on a paradigm like CAA,
which considers dependability as a first-class citizen, ensur-
ing that a particular design satisfies the requirements (either
related with dependability or not) is a challenging task that
engineers must face with.

The proposal then is to make use of simulation as means
to assess the correctness of a CAA-oriented design model
with respect to a predefined set of requirements. The ap-
proach then consists of simulating a CAA-oriented model
M 4 4 under certain initial conditions s, specified as de-
sired by the engineer. The simulation of M 44 initialised
in $;,;t produces results that determine how such a model
behaves under the given conditions.

The engineer then, based on the results produced by the
simulation, will decide whether the current model Mg 44
satisfies the elicited requirements. In case of discrepancies
then the engineer may conclude that the model M 4 4 is in-

IFor a full list of facts see ht tp: //homepages.cs.ncl.ac.uk/
alexander.romanovsky/home.formal/caa.html.

correct. This conclusion is made under the hypothesis that
the requirements are correct. The engineer then, after con-
cluded that the design model is incorrect, will have to mod-
ify such a model and rerun the simulation. This process
has to be done until the engineer concludes that the model
M 44 satisfies the elicited requirements.

The hypothesis on the correctness of the elicited re-
quirements is grounded on the assumption of using the
Dependability-Oriented Requirements Engineering Process
(DREP) [4] to elicit the requirements. Moreover, it has
been found empirical evidence > of good alignment between
DREP as requirement elicitation process and CAA as de-
sign paradigm.

2. tCAA

The presented software design assessment approach tar-
gets CAA-oriented models. Thus, one of the engineers’ key
activities is to create such models. To facilitate this activity,
a domain specific language (DSL) called 1CAA has been de-
fined (the ¢ stands for time). The aim at defining this DSL
is to allow engineers to perform the modelling using only
terms of the CAA paradigm.

The tCAA DSL includes all the extensions [3] that have
been proposed since the CAA paradigm was introduced for
the very first time. In particular, the DSL includes new
time-related extensions. These extensions were proposed
because real-time software systems are part of the solution
space targeted by the CAA paradigm: real-time software
systems are either inherent or imposed concurrent and very
often have dependability requirements [2].

3. Simulation environment

A programmer usually does not wait until he considers
the program is correct to execute it. Actually, he executes

2Experiments carried out during the practical sessions of the Depend-
ably Systems masters course (summer 2011 and 2012) at the University of
Luxembourg.



the program many times before concluding it is correct.
This iterative execution of the program lets the program-
mer gain confidence and ensure that things are going as ex-
pected. The purpose of using simulation is to achieve the
same functionalities available for a programmer when cod-
ing, but at the level of the design phase. Therefore, by sim-
ulation, an engineer should be allowed to exercise a CAA-
oriented model to understand how it behaves under certain
conditions. The goal is to create a design whose behaviour
satisfies the elicited requirements.

3.1. DEVS

The Discrete Event System Specification (DEVS) [6]
formalism is considered the most general conceptual frame-
work to model discrete event systems. Any system that per-
forms a finite number of changes in a finite interval of time
can be modelled with this formalism.

However, beside the generality of the formalism, the
main reasons that make DEVS interesting to be used as sim-
ulation framework for CAA-oriented models are:

e the possibility to represent discrete time systems: this
feature is crucial as CAA-oriented models might have
to satisfy time-related requirements,

e the representation of complex systems by the composi-
tion of atomic DEVS: the core of the CAA paradigm is
a block (called CAA) that not only groups a set of op-
erations spread over several process, but also provides
effective fault containment and controlled access to
shared transactional resources. Complex software sys-
tems are designed by coupling different CAAs. Thus,
both DEVS and the CAA paradigm share the same
structuring principles,

e the existence of software tools with advanced simula-
tion features [1]: there is not need to perform any de-
velopment to achieve the simulation of DEVS models.
Moreover, the existence of these tools is clear evidence
that the formalism is well founded and spread.

The last point deserves further clarification. To exploit
any of the existing tools to simulate DEVS, a CAA-oriented
model Mca4 has to be “translated” to a DEVS model
Mpgyvs. This translation then will not only allow engi-
neers to use any of the existing simulation tools associated
to DEVS, but also provide a clear semantic definition of the
tCAA DSL modelling language. Thus, this translation will
bring both usefulness and formality to tCAA DSL.

4. Toolset

Both the tCAA DSL and the transformation that allows
obtaining a DEVS model must be supported by tools. These

tools must provide means to ensure the easy definition of
CAA-oriented models, as well as their simulation. It has
been decided to use the Eclipse ecosystem as implementa-
tion platform. The main reason for this choice is the ex-
tensive offer both to develop graphical and textual editors
and manipulate models. Thus, a toolset integrated within
the Eclipse environment would support the work of the en-
gineers when modelling and simulating CAA-oriented de-
signs. Notice, that the required process to obtain the sim-
ulation of a CAA-oriented model is hidden to the engi-
neers as the translation of CAA-oriented models to DEVS
is achieved automatically by applying model transformation
principles and reusing any of the existing DEVS simula-
tors. Therefore, engineers are not required to have any prior
knowledge on DEVS to exploit the presented modelling ap-
proach and its associated tools.

5. Conclusions

The clear advantages of the presented software design
assessment approach are: (1) self-contained analysis of
CAA-oriented models: engineers do not need to rely on
third-party formalisms to analyse their models (i.e. both the
modelling as the assessment in done in terms of the CAA
paradigm), and (2) early analysis of a model: the simula-
tion of a (not necessary complete) model lets engineers get
early feedback about the decisions made (rather than using
simulation to assess the model, it is used to drive the defini-
tion or enhance of the model).

References

[1] F. Bergero and E. Kofman. Powerdevs: a tool for hybrid
system modeling and real-time simulation. Simulation, 87(1-
2):113-132, Jan. 2011.

[2] A. Burns and A. J. Wellings. Real-Time Systems and Pro-
gramming Languages: ADA 95, Real-Time Java, and Real-
Time POSIX. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2001.

[3] A. Capozucca. DT4BP: A Business Process Modelling Lan-
guage for Dependable Time-Constrained Business Processes.
PhD thesis, University of Luxembourg (Thesis PhD-FSTC-
34-2010), December 2010.

[4] S. Mustafiz. Dependability-oriented model-driven require-
ments engineering for reactive systems. PhD thesis, Montreal,
Quebec, Canada, 2010.

[5] J. Xu, B. Randell, A. Romanovsky, C. M. F. Rubira, R. J.
Stroud, and Z. Wu. Fault Tolerance in Concurrent Object-
Oriented Software through Coordinated Error Recovery. Pro-
ceedings of the 25 International Symposium on Fault-Tolerant
Computing, pages 499-508, 1995.

[6] B.P. Zeigler, T. G. Kim, and H. Prachofer. Theory of Model-
ing and Simulation. Academic Press, Inc., Orlando, FL, USA,
2nd edition, 2000.



